| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caragenuncl.1 | ⊢ ( 𝜑  →  𝑂  ∈  OutMeas ) | 
						
							| 2 |  | caragenuncl.2 | ⊢ 𝑆  =  ( CaraGen ‘ 𝑂 ) | 
						
							| 3 |  | caragenuncl.3 | ⊢ ( 𝜑  →  𝐸  ∈  𝑆 ) | 
						
							| 4 |  | caragenuncl.4 | ⊢ ( 𝜑  →  𝐹  ∈  𝑆 ) | 
						
							| 5 |  | eqid | ⊢ ∪  dom  𝑂  =  ∪  dom  𝑂 | 
						
							| 6 | 1 2 3 5 | caragenelss | ⊢ ( 𝜑  →  𝐸  ⊆  ∪  dom  𝑂 ) | 
						
							| 7 | 1 2 4 5 | caragenelss | ⊢ ( 𝜑  →  𝐹  ⊆  ∪  dom  𝑂 ) | 
						
							| 8 | 6 7 | unssd | ⊢ ( 𝜑  →  ( 𝐸  ∪  𝐹 )  ⊆  ∪  dom  𝑂 ) | 
						
							| 9 | 1 5 | unidmex | ⊢ ( 𝜑  →  ∪  dom  𝑂  ∈  V ) | 
						
							| 10 |  | ssexg | ⊢ ( ( ( 𝐸  ∪  𝐹 )  ⊆  ∪  dom  𝑂  ∧  ∪  dom  𝑂  ∈  V )  →  ( 𝐸  ∪  𝐹 )  ∈  V ) | 
						
							| 11 | 8 9 10 | syl2anc | ⊢ ( 𝜑  →  ( 𝐸  ∪  𝐹 )  ∈  V ) | 
						
							| 12 |  | elpwg | ⊢ ( ( 𝐸  ∪  𝐹 )  ∈  V  →  ( ( 𝐸  ∪  𝐹 )  ∈  𝒫  ∪  dom  𝑂  ↔  ( 𝐸  ∪  𝐹 )  ⊆  ∪  dom  𝑂 ) ) | 
						
							| 13 | 11 12 | syl | ⊢ ( 𝜑  →  ( ( 𝐸  ∪  𝐹 )  ∈  𝒫  ∪  dom  𝑂  ↔  ( 𝐸  ∪  𝐹 )  ⊆  ∪  dom  𝑂 ) ) | 
						
							| 14 | 8 13 | mpbird | ⊢ ( 𝜑  →  ( 𝐸  ∪  𝐹 )  ∈  𝒫  ∪  dom  𝑂 ) | 
						
							| 15 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  𝑂  ∈  OutMeas ) | 
						
							| 16 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  𝐸  ∈  𝑆 ) | 
						
							| 17 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  𝐹  ∈  𝑆 ) | 
						
							| 18 |  | elpwi | ⊢ ( 𝑎  ∈  𝒫  ∪  dom  𝑂  →  𝑎  ⊆  ∪  dom  𝑂 ) | 
						
							| 19 | 18 | adantl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  𝑎  ⊆  ∪  dom  𝑂 ) | 
						
							| 20 | 15 2 16 17 5 19 | caragenuncllem | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( ( 𝑂 ‘ ( 𝑎  ∩  ( 𝐸  ∪  𝐹 ) ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  ( 𝐸  ∪  𝐹 ) ) ) )  =  ( 𝑂 ‘ 𝑎 ) ) | 
						
							| 21 | 1 5 2 14 20 | carageneld | ⊢ ( 𝜑  →  ( 𝐸  ∪  𝐹 )  ∈  𝑆 ) |