| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caragendifcl.o | ⊢ ( 𝜑  →  𝑂  ∈  OutMeas ) | 
						
							| 2 |  | caragendifcl.s | ⊢ 𝑆  =  ( CaraGen ‘ 𝑂 ) | 
						
							| 3 |  | caragendifcl.e | ⊢ ( 𝜑  →  𝐸  ∈  𝑆 ) | 
						
							| 4 |  | eqid | ⊢ ∪  dom  𝑂  =  ∪  dom  𝑂 | 
						
							| 5 | 2 | caragenss | ⊢ ( 𝑂  ∈  OutMeas  →  𝑆  ⊆  dom  𝑂 ) | 
						
							| 6 | 1 5 | syl | ⊢ ( 𝜑  →  𝑆  ⊆  dom  𝑂 ) | 
						
							| 7 | 6 | unissd | ⊢ ( 𝜑  →  ∪  𝑆  ⊆  ∪  dom  𝑂 ) | 
						
							| 8 | 7 | ssdifssd | ⊢ ( 𝜑  →  ( ∪  𝑆  ∖  𝐸 )  ⊆  ∪  dom  𝑂 ) | 
						
							| 9 | 2 | fvexi | ⊢ 𝑆  ∈  V | 
						
							| 10 | 9 | uniex | ⊢ ∪  𝑆  ∈  V | 
						
							| 11 |  | difexg | ⊢ ( ∪  𝑆  ∈  V  →  ( ∪  𝑆  ∖  𝐸 )  ∈  V ) | 
						
							| 12 | 10 11 | ax-mp | ⊢ ( ∪  𝑆  ∖  𝐸 )  ∈  V | 
						
							| 13 | 12 | a1i | ⊢ ( 𝜑  →  ( ∪  𝑆  ∖  𝐸 )  ∈  V ) | 
						
							| 14 |  | elpwg | ⊢ ( ( ∪  𝑆  ∖  𝐸 )  ∈  V  →  ( ( ∪  𝑆  ∖  𝐸 )  ∈  𝒫  ∪  dom  𝑂  ↔  ( ∪  𝑆  ∖  𝐸 )  ⊆  ∪  dom  𝑂 ) ) | 
						
							| 15 | 13 14 | syl | ⊢ ( 𝜑  →  ( ( ∪  𝑆  ∖  𝐸 )  ∈  𝒫  ∪  dom  𝑂  ↔  ( ∪  𝑆  ∖  𝐸 )  ⊆  ∪  dom  𝑂 ) ) | 
						
							| 16 | 8 15 | mpbird | ⊢ ( 𝜑  →  ( ∪  𝑆  ∖  𝐸 )  ∈  𝒫  ∪  dom  𝑂 ) | 
						
							| 17 |  | elpwi | ⊢ ( 𝑎  ∈  𝒫  ∪  dom  𝑂  →  𝑎  ⊆  ∪  dom  𝑂 ) | 
						
							| 18 | 17 | adantl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  𝑎  ⊆  ∪  dom  𝑂 ) | 
						
							| 19 | 1 2 | caragenuni | ⊢ ( 𝜑  →  ∪  𝑆  =  ∪  dom  𝑂 ) | 
						
							| 20 | 19 | eqcomd | ⊢ ( 𝜑  →  ∪  dom  𝑂  =  ∪  𝑆 ) | 
						
							| 21 | 20 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ∪  dom  𝑂  =  ∪  𝑆 ) | 
						
							| 22 | 18 21 | sseqtrd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  𝑎  ⊆  ∪  𝑆 ) | 
						
							| 23 |  | difin2 | ⊢ ( 𝑎  ⊆  ∪  𝑆  →  ( 𝑎  ∖  𝐸 )  =  ( ( ∪  𝑆  ∖  𝐸 )  ∩  𝑎 ) ) | 
						
							| 24 | 22 23 | syl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( 𝑎  ∖  𝐸 )  =  ( ( ∪  𝑆  ∖  𝐸 )  ∩  𝑎 ) ) | 
						
							| 25 |  | incom | ⊢ ( ( ∪  𝑆  ∖  𝐸 )  ∩  𝑎 )  =  ( 𝑎  ∩  ( ∪  𝑆  ∖  𝐸 ) ) | 
						
							| 26 | 25 | a1i | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( ( ∪  𝑆  ∖  𝐸 )  ∩  𝑎 )  =  ( 𝑎  ∩  ( ∪  𝑆  ∖  𝐸 ) ) ) | 
						
							| 27 | 24 26 | eqtr2d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( 𝑎  ∩  ( ∪  𝑆  ∖  𝐸 ) )  =  ( 𝑎  ∖  𝐸 ) ) | 
						
							| 28 | 27 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( 𝑂 ‘ ( 𝑎  ∩  ( ∪  𝑆  ∖  𝐸 ) ) )  =  ( 𝑂 ‘ ( 𝑎  ∖  𝐸 ) ) ) | 
						
							| 29 | 22 | ssdifd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( 𝑎  ∖  𝐸 )  ⊆  ( ∪  𝑆  ∖  𝐸 ) ) | 
						
							| 30 |  | sscon | ⊢ ( ( 𝑎  ∖  𝐸 )  ⊆  ( ∪  𝑆  ∖  𝐸 )  →  ( 𝑎  ∖  ( ∪  𝑆  ∖  𝐸 ) )  ⊆  ( 𝑎  ∖  ( 𝑎  ∖  𝐸 ) ) ) | 
						
							| 31 | 29 30 | syl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( 𝑎  ∖  ( ∪  𝑆  ∖  𝐸 ) )  ⊆  ( 𝑎  ∖  ( 𝑎  ∖  𝐸 ) ) ) | 
						
							| 32 |  | dfin4 | ⊢ ( 𝑎  ∩  𝐸 )  =  ( 𝑎  ∖  ( 𝑎  ∖  𝐸 ) ) | 
						
							| 33 | 32 | a1i | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( 𝑎  ∩  𝐸 )  =  ( 𝑎  ∖  ( 𝑎  ∖  𝐸 ) ) ) | 
						
							| 34 |  | eqimss2 | ⊢ ( ( 𝑎  ∩  𝐸 )  =  ( 𝑎  ∖  ( 𝑎  ∖  𝐸 ) )  →  ( 𝑎  ∖  ( 𝑎  ∖  𝐸 ) )  ⊆  ( 𝑎  ∩  𝐸 ) ) | 
						
							| 35 | 33 34 | syl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( 𝑎  ∖  ( 𝑎  ∖  𝐸 ) )  ⊆  ( 𝑎  ∩  𝐸 ) ) | 
						
							| 36 | 31 35 | sstrd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( 𝑎  ∖  ( ∪  𝑆  ∖  𝐸 ) )  ⊆  ( 𝑎  ∩  𝐸 ) ) | 
						
							| 37 |  | elinel1 | ⊢ ( 𝑥  ∈  ( 𝑎  ∩  𝐸 )  →  𝑥  ∈  𝑎 ) | 
						
							| 38 |  | elinel2 | ⊢ ( 𝑥  ∈  ( 𝑎  ∩  𝐸 )  →  𝑥  ∈  𝐸 ) | 
						
							| 39 |  | elndif | ⊢ ( 𝑥  ∈  𝐸  →  ¬  𝑥  ∈  ( ∪  𝑆  ∖  𝐸 ) ) | 
						
							| 40 | 38 39 | syl | ⊢ ( 𝑥  ∈  ( 𝑎  ∩  𝐸 )  →  ¬  𝑥  ∈  ( ∪  𝑆  ∖  𝐸 ) ) | 
						
							| 41 | 37 40 | eldifd | ⊢ ( 𝑥  ∈  ( 𝑎  ∩  𝐸 )  →  𝑥  ∈  ( 𝑎  ∖  ( ∪  𝑆  ∖  𝐸 ) ) ) | 
						
							| 42 | 41 | ssriv | ⊢ ( 𝑎  ∩  𝐸 )  ⊆  ( 𝑎  ∖  ( ∪  𝑆  ∖  𝐸 ) ) | 
						
							| 43 | 42 | a1i | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( 𝑎  ∩  𝐸 )  ⊆  ( 𝑎  ∖  ( ∪  𝑆  ∖  𝐸 ) ) ) | 
						
							| 44 | 36 43 | eqssd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( 𝑎  ∖  ( ∪  𝑆  ∖  𝐸 ) )  =  ( 𝑎  ∩  𝐸 ) ) | 
						
							| 45 | 44 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( 𝑂 ‘ ( 𝑎  ∖  ( ∪  𝑆  ∖  𝐸 ) ) )  =  ( 𝑂 ‘ ( 𝑎  ∩  𝐸 ) ) ) | 
						
							| 46 | 28 45 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( ( 𝑂 ‘ ( 𝑎  ∩  ( ∪  𝑆  ∖  𝐸 ) ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  ( ∪  𝑆  ∖  𝐸 ) ) ) )  =  ( ( 𝑂 ‘ ( 𝑎  ∖  𝐸 ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∩  𝐸 ) ) ) ) | 
						
							| 47 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 48 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  𝑂  ∈  OutMeas ) | 
						
							| 49 | 18 | ssdifssd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( 𝑎  ∖  𝐸 )  ⊆  ∪  dom  𝑂 ) | 
						
							| 50 | 48 4 49 | omecl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( 𝑂 ‘ ( 𝑎  ∖  𝐸 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 51 | 47 50 | sselid | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( 𝑂 ‘ ( 𝑎  ∖  𝐸 ) )  ∈  ℝ* ) | 
						
							| 52 |  | ssinss1 | ⊢ ( 𝑎  ⊆  ∪  dom  𝑂  →  ( 𝑎  ∩  𝐸 )  ⊆  ∪  dom  𝑂 ) | 
						
							| 53 | 17 52 | syl | ⊢ ( 𝑎  ∈  𝒫  ∪  dom  𝑂  →  ( 𝑎  ∩  𝐸 )  ⊆  ∪  dom  𝑂 ) | 
						
							| 54 | 53 | adantl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( 𝑎  ∩  𝐸 )  ⊆  ∪  dom  𝑂 ) | 
						
							| 55 | 48 4 54 | omecl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( 𝑂 ‘ ( 𝑎  ∩  𝐸 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 56 | 47 55 | sselid | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( 𝑂 ‘ ( 𝑎  ∩  𝐸 ) )  ∈  ℝ* ) | 
						
							| 57 | 51 56 | xaddcomd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( ( 𝑂 ‘ ( 𝑎  ∖  𝐸 ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∩  𝐸 ) ) )  =  ( ( 𝑂 ‘ ( 𝑎  ∩  𝐸 ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  𝐸 ) ) ) ) | 
						
							| 58 | 1 2 | caragenel | ⊢ ( 𝜑  →  ( 𝐸  ∈  𝑆  ↔  ( 𝐸  ∈  𝒫  ∪  dom  𝑂  ∧  ∀ 𝑎  ∈  𝒫  ∪  dom  𝑂 ( ( 𝑂 ‘ ( 𝑎  ∩  𝐸 ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  𝐸 ) ) )  =  ( 𝑂 ‘ 𝑎 ) ) ) ) | 
						
							| 59 | 3 58 | mpbid | ⊢ ( 𝜑  →  ( 𝐸  ∈  𝒫  ∪  dom  𝑂  ∧  ∀ 𝑎  ∈  𝒫  ∪  dom  𝑂 ( ( 𝑂 ‘ ( 𝑎  ∩  𝐸 ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  𝐸 ) ) )  =  ( 𝑂 ‘ 𝑎 ) ) ) | 
						
							| 60 | 59 | simprd | ⊢ ( 𝜑  →  ∀ 𝑎  ∈  𝒫  ∪  dom  𝑂 ( ( 𝑂 ‘ ( 𝑎  ∩  𝐸 ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  𝐸 ) ) )  =  ( 𝑂 ‘ 𝑎 ) ) | 
						
							| 61 | 60 | r19.21bi | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( ( 𝑂 ‘ ( 𝑎  ∩  𝐸 ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  𝐸 ) ) )  =  ( 𝑂 ‘ 𝑎 ) ) | 
						
							| 62 | 46 57 61 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( ( 𝑂 ‘ ( 𝑎  ∩  ( ∪  𝑆  ∖  𝐸 ) ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  ( ∪  𝑆  ∖  𝐸 ) ) ) )  =  ( 𝑂 ‘ 𝑎 ) ) | 
						
							| 63 | 1 4 2 16 62 | carageneld | ⊢ ( 𝜑  →  ( ∪  𝑆  ∖  𝐸 )  ∈  𝑆 ) |