Step |
Hyp |
Ref |
Expression |
1 |
|
caragendifcl.o |
⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) |
2 |
|
caragendifcl.s |
⊢ 𝑆 = ( CaraGen ‘ 𝑂 ) |
3 |
|
caragendifcl.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝑆 ) |
4 |
|
eqid |
⊢ ∪ dom 𝑂 = ∪ dom 𝑂 |
5 |
2
|
caragenss |
⊢ ( 𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂 ) |
6 |
1 5
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ dom 𝑂 ) |
7 |
6
|
unissd |
⊢ ( 𝜑 → ∪ 𝑆 ⊆ ∪ dom 𝑂 ) |
8 |
7
|
ssdifssd |
⊢ ( 𝜑 → ( ∪ 𝑆 ∖ 𝐸 ) ⊆ ∪ dom 𝑂 ) |
9 |
2
|
fvexi |
⊢ 𝑆 ∈ V |
10 |
9
|
uniex |
⊢ ∪ 𝑆 ∈ V |
11 |
|
difexg |
⊢ ( ∪ 𝑆 ∈ V → ( ∪ 𝑆 ∖ 𝐸 ) ∈ V ) |
12 |
10 11
|
ax-mp |
⊢ ( ∪ 𝑆 ∖ 𝐸 ) ∈ V |
13 |
12
|
a1i |
⊢ ( 𝜑 → ( ∪ 𝑆 ∖ 𝐸 ) ∈ V ) |
14 |
|
elpwg |
⊢ ( ( ∪ 𝑆 ∖ 𝐸 ) ∈ V → ( ( ∪ 𝑆 ∖ 𝐸 ) ∈ 𝒫 ∪ dom 𝑂 ↔ ( ∪ 𝑆 ∖ 𝐸 ) ⊆ ∪ dom 𝑂 ) ) |
15 |
13 14
|
syl |
⊢ ( 𝜑 → ( ( ∪ 𝑆 ∖ 𝐸 ) ∈ 𝒫 ∪ dom 𝑂 ↔ ( ∪ 𝑆 ∖ 𝐸 ) ⊆ ∪ dom 𝑂 ) ) |
16 |
8 15
|
mpbird |
⊢ ( 𝜑 → ( ∪ 𝑆 ∖ 𝐸 ) ∈ 𝒫 ∪ dom 𝑂 ) |
17 |
|
elpwi |
⊢ ( 𝑎 ∈ 𝒫 ∪ dom 𝑂 → 𝑎 ⊆ ∪ dom 𝑂 ) |
18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → 𝑎 ⊆ ∪ dom 𝑂 ) |
19 |
1 2
|
caragenuni |
⊢ ( 𝜑 → ∪ 𝑆 = ∪ dom 𝑂 ) |
20 |
19
|
eqcomd |
⊢ ( 𝜑 → ∪ dom 𝑂 = ∪ 𝑆 ) |
21 |
20
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ∪ dom 𝑂 = ∪ 𝑆 ) |
22 |
18 21
|
sseqtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → 𝑎 ⊆ ∪ 𝑆 ) |
23 |
|
difin2 |
⊢ ( 𝑎 ⊆ ∪ 𝑆 → ( 𝑎 ∖ 𝐸 ) = ( ( ∪ 𝑆 ∖ 𝐸 ) ∩ 𝑎 ) ) |
24 |
22 23
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( 𝑎 ∖ 𝐸 ) = ( ( ∪ 𝑆 ∖ 𝐸 ) ∩ 𝑎 ) ) |
25 |
|
incom |
⊢ ( ( ∪ 𝑆 ∖ 𝐸 ) ∩ 𝑎 ) = ( 𝑎 ∩ ( ∪ 𝑆 ∖ 𝐸 ) ) |
26 |
25
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( ( ∪ 𝑆 ∖ 𝐸 ) ∩ 𝑎 ) = ( 𝑎 ∩ ( ∪ 𝑆 ∖ 𝐸 ) ) ) |
27 |
24 26
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( 𝑎 ∩ ( ∪ 𝑆 ∖ 𝐸 ) ) = ( 𝑎 ∖ 𝐸 ) ) |
28 |
27
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( 𝑂 ‘ ( 𝑎 ∩ ( ∪ 𝑆 ∖ 𝐸 ) ) ) = ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ) |
29 |
22
|
ssdifd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( 𝑎 ∖ 𝐸 ) ⊆ ( ∪ 𝑆 ∖ 𝐸 ) ) |
30 |
|
sscon |
⊢ ( ( 𝑎 ∖ 𝐸 ) ⊆ ( ∪ 𝑆 ∖ 𝐸 ) → ( 𝑎 ∖ ( ∪ 𝑆 ∖ 𝐸 ) ) ⊆ ( 𝑎 ∖ ( 𝑎 ∖ 𝐸 ) ) ) |
31 |
29 30
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( 𝑎 ∖ ( ∪ 𝑆 ∖ 𝐸 ) ) ⊆ ( 𝑎 ∖ ( 𝑎 ∖ 𝐸 ) ) ) |
32 |
|
dfin4 |
⊢ ( 𝑎 ∩ 𝐸 ) = ( 𝑎 ∖ ( 𝑎 ∖ 𝐸 ) ) |
33 |
32
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( 𝑎 ∩ 𝐸 ) = ( 𝑎 ∖ ( 𝑎 ∖ 𝐸 ) ) ) |
34 |
|
eqimss2 |
⊢ ( ( 𝑎 ∩ 𝐸 ) = ( 𝑎 ∖ ( 𝑎 ∖ 𝐸 ) ) → ( 𝑎 ∖ ( 𝑎 ∖ 𝐸 ) ) ⊆ ( 𝑎 ∩ 𝐸 ) ) |
35 |
33 34
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( 𝑎 ∖ ( 𝑎 ∖ 𝐸 ) ) ⊆ ( 𝑎 ∩ 𝐸 ) ) |
36 |
31 35
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( 𝑎 ∖ ( ∪ 𝑆 ∖ 𝐸 ) ) ⊆ ( 𝑎 ∩ 𝐸 ) ) |
37 |
|
elinel1 |
⊢ ( 𝑥 ∈ ( 𝑎 ∩ 𝐸 ) → 𝑥 ∈ 𝑎 ) |
38 |
|
elinel2 |
⊢ ( 𝑥 ∈ ( 𝑎 ∩ 𝐸 ) → 𝑥 ∈ 𝐸 ) |
39 |
|
elndif |
⊢ ( 𝑥 ∈ 𝐸 → ¬ 𝑥 ∈ ( ∪ 𝑆 ∖ 𝐸 ) ) |
40 |
38 39
|
syl |
⊢ ( 𝑥 ∈ ( 𝑎 ∩ 𝐸 ) → ¬ 𝑥 ∈ ( ∪ 𝑆 ∖ 𝐸 ) ) |
41 |
37 40
|
eldifd |
⊢ ( 𝑥 ∈ ( 𝑎 ∩ 𝐸 ) → 𝑥 ∈ ( 𝑎 ∖ ( ∪ 𝑆 ∖ 𝐸 ) ) ) |
42 |
41
|
ssriv |
⊢ ( 𝑎 ∩ 𝐸 ) ⊆ ( 𝑎 ∖ ( ∪ 𝑆 ∖ 𝐸 ) ) |
43 |
42
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( 𝑎 ∩ 𝐸 ) ⊆ ( 𝑎 ∖ ( ∪ 𝑆 ∖ 𝐸 ) ) ) |
44 |
36 43
|
eqssd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( 𝑎 ∖ ( ∪ 𝑆 ∖ 𝐸 ) ) = ( 𝑎 ∩ 𝐸 ) ) |
45 |
44
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( 𝑂 ‘ ( 𝑎 ∖ ( ∪ 𝑆 ∖ 𝐸 ) ) ) = ( 𝑂 ‘ ( 𝑎 ∩ 𝐸 ) ) ) |
46 |
28 45
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( ( 𝑂 ‘ ( 𝑎 ∩ ( ∪ 𝑆 ∖ 𝐸 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ ( ∪ 𝑆 ∖ 𝐸 ) ) ) ) = ( ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∩ 𝐸 ) ) ) ) |
47 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
48 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → 𝑂 ∈ OutMeas ) |
49 |
18
|
ssdifssd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( 𝑎 ∖ 𝐸 ) ⊆ ∪ dom 𝑂 ) |
50 |
48 4 49
|
omecl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ∈ ( 0 [,] +∞ ) ) |
51 |
47 50
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ∈ ℝ* ) |
52 |
|
ssinss1 |
⊢ ( 𝑎 ⊆ ∪ dom 𝑂 → ( 𝑎 ∩ 𝐸 ) ⊆ ∪ dom 𝑂 ) |
53 |
17 52
|
syl |
⊢ ( 𝑎 ∈ 𝒫 ∪ dom 𝑂 → ( 𝑎 ∩ 𝐸 ) ⊆ ∪ dom 𝑂 ) |
54 |
53
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( 𝑎 ∩ 𝐸 ) ⊆ ∪ dom 𝑂 ) |
55 |
48 4 54
|
omecl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( 𝑂 ‘ ( 𝑎 ∩ 𝐸 ) ) ∈ ( 0 [,] +∞ ) ) |
56 |
47 55
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( 𝑂 ‘ ( 𝑎 ∩ 𝐸 ) ) ∈ ℝ* ) |
57 |
51 56
|
xaddcomd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∩ 𝐸 ) ) ) = ( ( 𝑂 ‘ ( 𝑎 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ) ) |
58 |
1 2
|
caragenel |
⊢ ( 𝜑 → ( 𝐸 ∈ 𝑆 ↔ ( 𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ( ( 𝑂 ‘ ( 𝑎 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ) = ( 𝑂 ‘ 𝑎 ) ) ) ) |
59 |
3 58
|
mpbid |
⊢ ( 𝜑 → ( 𝐸 ∈ 𝒫 ∪ dom 𝑂 ∧ ∀ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ( ( 𝑂 ‘ ( 𝑎 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ) = ( 𝑂 ‘ 𝑎 ) ) ) |
60 |
59
|
simprd |
⊢ ( 𝜑 → ∀ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ( ( 𝑂 ‘ ( 𝑎 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ) = ( 𝑂 ‘ 𝑎 ) ) |
61 |
60
|
r19.21bi |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( ( 𝑂 ‘ ( 𝑎 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ) = ( 𝑂 ‘ 𝑎 ) ) |
62 |
46 57 61
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( ( 𝑂 ‘ ( 𝑎 ∩ ( ∪ 𝑆 ∖ 𝐸 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ ( ∪ 𝑆 ∖ 𝐸 ) ) ) ) = ( 𝑂 ‘ 𝑎 ) ) |
63 |
1 4 2 16 62
|
carageneld |
⊢ ( 𝜑 → ( ∪ 𝑆 ∖ 𝐸 ) ∈ 𝑆 ) |