Metamath Proof Explorer


Theorem carageniuncl

Description: The Caratheodory's construction is closed under indexed countable union. Step (d) in the proof of Theorem 113C of Fremlin1 p. 20. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses carageniuncl.o ( 𝜑𝑂 ∈ OutMeas )
carageniuncl.s 𝑆 = ( CaraGen ‘ 𝑂 )
carageniuncl.3 ( 𝜑𝑀 ∈ ℤ )
carageniuncl.z 𝑍 = ( ℤ𝑀 )
carageniuncl.e ( 𝜑𝐸 : 𝑍𝑆 )
Assertion carageniuncl ( 𝜑 𝑛𝑍 ( 𝐸𝑛 ) ∈ 𝑆 )

Proof

Step Hyp Ref Expression
1 carageniuncl.o ( 𝜑𝑂 ∈ OutMeas )
2 carageniuncl.s 𝑆 = ( CaraGen ‘ 𝑂 )
3 carageniuncl.3 ( 𝜑𝑀 ∈ ℤ )
4 carageniuncl.z 𝑍 = ( ℤ𝑀 )
5 carageniuncl.e ( 𝜑𝐸 : 𝑍𝑆 )
6 eqid dom 𝑂 = dom 𝑂
7 5 ffvelrnda ( ( 𝜑𝑛𝑍 ) → ( 𝐸𝑛 ) ∈ 𝑆 )
8 elssuni ( ( 𝐸𝑛 ) ∈ 𝑆 → ( 𝐸𝑛 ) ⊆ 𝑆 )
9 7 8 syl ( ( 𝜑𝑛𝑍 ) → ( 𝐸𝑛 ) ⊆ 𝑆 )
10 1 2 caragenuni ( 𝜑 𝑆 = dom 𝑂 )
11 10 adantr ( ( 𝜑𝑛𝑍 ) → 𝑆 = dom 𝑂 )
12 9 11 sseqtrd ( ( 𝜑𝑛𝑍 ) → ( 𝐸𝑛 ) ⊆ dom 𝑂 )
13 12 ralrimiva ( 𝜑 → ∀ 𝑛𝑍 ( 𝐸𝑛 ) ⊆ dom 𝑂 )
14 iunss ( 𝑛𝑍 ( 𝐸𝑛 ) ⊆ dom 𝑂 ↔ ∀ 𝑛𝑍 ( 𝐸𝑛 ) ⊆ dom 𝑂 )
15 13 14 sylibr ( 𝜑 𝑛𝑍 ( 𝐸𝑛 ) ⊆ dom 𝑂 )
16 4 fvexi 𝑍 ∈ V
17 fvex ( 𝐸𝑛 ) ∈ V
18 16 17 iunex 𝑛𝑍 ( 𝐸𝑛 ) ∈ V
19 18 a1i ( 𝜑 𝑛𝑍 ( 𝐸𝑛 ) ∈ V )
20 elpwg ( 𝑛𝑍 ( 𝐸𝑛 ) ∈ V → ( 𝑛𝑍 ( 𝐸𝑛 ) ∈ 𝒫 dom 𝑂 𝑛𝑍 ( 𝐸𝑛 ) ⊆ dom 𝑂 ) )
21 19 20 syl ( 𝜑 → ( 𝑛𝑍 ( 𝐸𝑛 ) ∈ 𝒫 dom 𝑂 𝑛𝑍 ( 𝐸𝑛 ) ⊆ dom 𝑂 ) )
22 15 21 mpbird ( 𝜑 𝑛𝑍 ( 𝐸𝑛 ) ∈ 𝒫 dom 𝑂 )
23 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
24 1 adantr ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) → 𝑂 ∈ OutMeas )
25 elpwi ( 𝑎 ∈ 𝒫 dom 𝑂𝑎 dom 𝑂 )
26 ssinss1 ( 𝑎 dom 𝑂 → ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ⊆ dom 𝑂 )
27 25 26 syl ( 𝑎 ∈ 𝒫 dom 𝑂 → ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ⊆ dom 𝑂 )
28 27 adantl ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) → ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ⊆ dom 𝑂 )
29 24 6 28 omecl ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) → ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) ∈ ( 0 [,] +∞ ) )
30 23 29 sseldi ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) → ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) ∈ ℝ* )
31 25 adantl ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) → 𝑎 dom 𝑂 )
32 31 ssdifssd ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) → ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ⊆ dom 𝑂 )
33 24 6 32 omecl ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) → ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) ∈ ( 0 [,] +∞ ) )
34 23 33 sseldi ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) → ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) ∈ ℝ* )
35 30 34 xaddcld ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) → ( ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) ) ∈ ℝ* )
36 24 6 31 omecl ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) → ( 𝑂𝑎 ) ∈ ( 0 [,] +∞ ) )
37 23 36 sseldi ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) → ( 𝑂𝑎 ) ∈ ℝ* )
38 pnfge ( ( ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) ) ∈ ℝ* → ( ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) ) ≤ +∞ )
39 35 38 syl ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) → ( ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) ) ≤ +∞ )
40 39 adantr ( ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) ∧ ( 𝑂𝑎 ) = +∞ ) → ( ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) ) ≤ +∞ )
41 id ( ( 𝑂𝑎 ) = +∞ → ( 𝑂𝑎 ) = +∞ )
42 41 eqcomd ( ( 𝑂𝑎 ) = +∞ → +∞ = ( 𝑂𝑎 ) )
43 42 adantl ( ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) ∧ ( 𝑂𝑎 ) = +∞ ) → +∞ = ( 𝑂𝑎 ) )
44 40 43 breqtrd ( ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) ∧ ( 𝑂𝑎 ) = +∞ ) → ( ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) ) ≤ ( 𝑂𝑎 ) )
45 simpl ( ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) ∧ ¬ ( 𝑂𝑎 ) = +∞ ) → ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) )
46 rge0ssre ( 0 [,) +∞ ) ⊆ ℝ
47 0xr 0 ∈ ℝ*
48 47 a1i ( ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) ∧ ¬ ( 𝑂𝑎 ) = +∞ ) → 0 ∈ ℝ* )
49 pnfxr +∞ ∈ ℝ*
50 49 a1i ( ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) ∧ ¬ ( 𝑂𝑎 ) = +∞ ) → +∞ ∈ ℝ* )
51 45 36 syl ( ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) ∧ ¬ ( 𝑂𝑎 ) = +∞ ) → ( 𝑂𝑎 ) ∈ ( 0 [,] +∞ ) )
52 41 necon3bi ( ¬ ( 𝑂𝑎 ) = +∞ → ( 𝑂𝑎 ) ≠ +∞ )
53 52 adantl ( ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) ∧ ¬ ( 𝑂𝑎 ) = +∞ ) → ( 𝑂𝑎 ) ≠ +∞ )
54 48 50 51 53 eliccelicod ( ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) ∧ ¬ ( 𝑂𝑎 ) = +∞ ) → ( 𝑂𝑎 ) ∈ ( 0 [,) +∞ ) )
55 46 54 sseldi ( ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) ∧ ¬ ( 𝑂𝑎 ) = +∞ ) → ( 𝑂𝑎 ) ∈ ℝ )
56 24 ad2antrr ( ( ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) ∧ ( 𝑂𝑎 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → 𝑂 ∈ OutMeas )
57 31 ad2antrr ( ( ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) ∧ ( 𝑂𝑎 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → 𝑎 dom 𝑂 )
58 simpr ( ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) ∧ ( 𝑂𝑎 ) ∈ ℝ ) → ( 𝑂𝑎 ) ∈ ℝ )
59 58 adantr ( ( ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) ∧ ( 𝑂𝑎 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝑂𝑎 ) ∈ ℝ )
60 3 ad3antrrr ( ( ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) ∧ ( 𝑂𝑎 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → 𝑀 ∈ ℤ )
61 5 ad3antrrr ( ( ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) ∧ ( 𝑂𝑎 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → 𝐸 : 𝑍𝑆 )
62 simpr ( ( ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) ∧ ( 𝑂𝑎 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ )
63 eqid ( 𝑛𝑍 𝑖 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸𝑖 ) ) = ( 𝑛𝑍 𝑖 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸𝑖 ) )
64 fveq2 ( 𝑚 = 𝑛 → ( 𝐸𝑚 ) = ( 𝐸𝑛 ) )
65 oveq2 ( 𝑚 = 𝑛 → ( 𝑀 ..^ 𝑚 ) = ( 𝑀 ..^ 𝑛 ) )
66 65 iuneq1d ( 𝑚 = 𝑛 𝑖 ∈ ( 𝑀 ..^ 𝑚 ) ( 𝐸𝑖 ) = 𝑖 ∈ ( 𝑀 ..^ 𝑛 ) ( 𝐸𝑖 ) )
67 64 66 difeq12d ( 𝑚 = 𝑛 → ( ( 𝐸𝑚 ) ∖ 𝑖 ∈ ( 𝑀 ..^ 𝑚 ) ( 𝐸𝑖 ) ) = ( ( 𝐸𝑛 ) ∖ 𝑖 ∈ ( 𝑀 ..^ 𝑛 ) ( 𝐸𝑖 ) ) )
68 67 cbvmptv ( 𝑚𝑍 ↦ ( ( 𝐸𝑚 ) ∖ 𝑖 ∈ ( 𝑀 ..^ 𝑚 ) ( 𝐸𝑖 ) ) ) = ( 𝑛𝑍 ↦ ( ( 𝐸𝑛 ) ∖ 𝑖 ∈ ( 𝑀 ..^ 𝑛 ) ( 𝐸𝑖 ) ) )
69 56 2 6 57 59 60 4 61 62 63 68 carageniuncllem2 ( ( ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) ∧ ( 𝑂𝑎 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) ) ≤ ( ( 𝑂𝑎 ) + 𝑥 ) )
70 69 ralrimiva ( ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) ∧ ( 𝑂𝑎 ) ∈ ℝ ) → ∀ 𝑥 ∈ ℝ+ ( ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) ) ≤ ( ( 𝑂𝑎 ) + 𝑥 ) )
71 35 adantr ( ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) ∧ ( 𝑂𝑎 ) ∈ ℝ ) → ( ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) ) ∈ ℝ* )
72 xralrple ( ( ( ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) ) ∈ ℝ* ∧ ( 𝑂𝑎 ) ∈ ℝ ) → ( ( ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) ) ≤ ( 𝑂𝑎 ) ↔ ∀ 𝑥 ∈ ℝ+ ( ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) ) ≤ ( ( 𝑂𝑎 ) + 𝑥 ) ) )
73 71 58 72 syl2anc ( ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) ∧ ( 𝑂𝑎 ) ∈ ℝ ) → ( ( ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) ) ≤ ( 𝑂𝑎 ) ↔ ∀ 𝑥 ∈ ℝ+ ( ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) ) ≤ ( ( 𝑂𝑎 ) + 𝑥 ) ) )
74 70 73 mpbird ( ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) ∧ ( 𝑂𝑎 ) ∈ ℝ ) → ( ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) ) ≤ ( 𝑂𝑎 ) )
75 45 55 74 syl2anc ( ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) ∧ ¬ ( 𝑂𝑎 ) = +∞ ) → ( ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) ) ≤ ( 𝑂𝑎 ) )
76 44 75 pm2.61dan ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) → ( ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) ) ≤ ( 𝑂𝑎 ) )
77 24 6 31 omelesplit ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) → ( 𝑂𝑎 ) ≤ ( ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) ) )
78 35 37 76 77 xrletrid ( ( 𝜑𝑎 ∈ 𝒫 dom 𝑂 ) → ( ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 𝑛𝑍 ( 𝐸𝑛 ) ) ) ) = ( 𝑂𝑎 ) )
79 1 6 2 22 78 carageneld ( 𝜑 𝑛𝑍 ( 𝐸𝑛 ) ∈ 𝑆 )