| Step | Hyp | Ref | Expression | 
						
							| 1 |  | carageniuncl.o | ⊢ ( 𝜑  →  𝑂  ∈  OutMeas ) | 
						
							| 2 |  | carageniuncl.s | ⊢ 𝑆  =  ( CaraGen ‘ 𝑂 ) | 
						
							| 3 |  | carageniuncl.3 | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 4 |  | carageniuncl.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 5 |  | carageniuncl.e | ⊢ ( 𝜑  →  𝐸 : 𝑍 ⟶ 𝑆 ) | 
						
							| 6 |  | eqid | ⊢ ∪  dom  𝑂  =  ∪  dom  𝑂 | 
						
							| 7 | 5 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑛 )  ∈  𝑆 ) | 
						
							| 8 |  | elssuni | ⊢ ( ( 𝐸 ‘ 𝑛 )  ∈  𝑆  →  ( 𝐸 ‘ 𝑛 )  ⊆  ∪  𝑆 ) | 
						
							| 9 | 7 8 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑛 )  ⊆  ∪  𝑆 ) | 
						
							| 10 | 1 2 | caragenuni | ⊢ ( 𝜑  →  ∪  𝑆  =  ∪  dom  𝑂 ) | 
						
							| 11 | 10 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ∪  𝑆  =  ∪  dom  𝑂 ) | 
						
							| 12 | 9 11 | sseqtrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑛 )  ⊆  ∪  dom  𝑂 ) | 
						
							| 13 | 12 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ⊆  ∪  dom  𝑂 ) | 
						
							| 14 |  | iunss | ⊢ ( ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ⊆  ∪  dom  𝑂  ↔  ∀ 𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ⊆  ∪  dom  𝑂 ) | 
						
							| 15 | 13 14 | sylibr | ⊢ ( 𝜑  →  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ⊆  ∪  dom  𝑂 ) | 
						
							| 16 | 4 | fvexi | ⊢ 𝑍  ∈  V | 
						
							| 17 |  | fvex | ⊢ ( 𝐸 ‘ 𝑛 )  ∈  V | 
						
							| 18 | 16 17 | iunex | ⊢ ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ∈  V | 
						
							| 19 | 18 | a1i | ⊢ ( 𝜑  →  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ∈  V ) | 
						
							| 20 |  | elpwg | ⊢ ( ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ∈  V  →  ( ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ∈  𝒫  ∪  dom  𝑂  ↔  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ⊆  ∪  dom  𝑂 ) ) | 
						
							| 21 | 19 20 | syl | ⊢ ( 𝜑  →  ( ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ∈  𝒫  ∪  dom  𝑂  ↔  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ⊆  ∪  dom  𝑂 ) ) | 
						
							| 22 | 15 21 | mpbird | ⊢ ( 𝜑  →  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ∈  𝒫  ∪  dom  𝑂 ) | 
						
							| 23 |  | iccssxr | ⊢ ( 0 [,] +∞ )  ⊆  ℝ* | 
						
							| 24 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  𝑂  ∈  OutMeas ) | 
						
							| 25 |  | elpwi | ⊢ ( 𝑎  ∈  𝒫  ∪  dom  𝑂  →  𝑎  ⊆  ∪  dom  𝑂 ) | 
						
							| 26 |  | ssinss1 | ⊢ ( 𝑎  ⊆  ∪  dom  𝑂  →  ( 𝑎  ∩  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) )  ⊆  ∪  dom  𝑂 ) | 
						
							| 27 | 25 26 | syl | ⊢ ( 𝑎  ∈  𝒫  ∪  dom  𝑂  →  ( 𝑎  ∩  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) )  ⊆  ∪  dom  𝑂 ) | 
						
							| 28 | 27 | adantl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( 𝑎  ∩  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) )  ⊆  ∪  dom  𝑂 ) | 
						
							| 29 | 24 6 28 | omecl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( 𝑂 ‘ ( 𝑎  ∩  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 30 | 23 29 | sselid | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( 𝑂 ‘ ( 𝑎  ∩  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) )  ∈  ℝ* ) | 
						
							| 31 | 25 | adantl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  𝑎  ⊆  ∪  dom  𝑂 ) | 
						
							| 32 | 31 | ssdifssd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( 𝑎  ∖  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) )  ⊆  ∪  dom  𝑂 ) | 
						
							| 33 | 24 6 32 | omecl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( 𝑂 ‘ ( 𝑎  ∖  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 34 | 23 33 | sselid | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( 𝑂 ‘ ( 𝑎  ∖  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) )  ∈  ℝ* ) | 
						
							| 35 | 30 34 | xaddcld | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( ( 𝑂 ‘ ( 𝑎  ∩  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) )  ∈  ℝ* ) | 
						
							| 36 | 24 6 31 | omecl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( 𝑂 ‘ 𝑎 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 37 | 23 36 | sselid | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( 𝑂 ‘ 𝑎 )  ∈  ℝ* ) | 
						
							| 38 |  | pnfge | ⊢ ( ( ( 𝑂 ‘ ( 𝑎  ∩  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) )  ∈  ℝ*  →  ( ( 𝑂 ‘ ( 𝑎  ∩  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) )  ≤  +∞ ) | 
						
							| 39 | 35 38 | syl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( ( 𝑂 ‘ ( 𝑎  ∩  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) )  ≤  +∞ ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  ∧  ( 𝑂 ‘ 𝑎 )  =  +∞ )  →  ( ( 𝑂 ‘ ( 𝑎  ∩  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) )  ≤  +∞ ) | 
						
							| 41 |  | id | ⊢ ( ( 𝑂 ‘ 𝑎 )  =  +∞  →  ( 𝑂 ‘ 𝑎 )  =  +∞ ) | 
						
							| 42 | 41 | eqcomd | ⊢ ( ( 𝑂 ‘ 𝑎 )  =  +∞  →  +∞  =  ( 𝑂 ‘ 𝑎 ) ) | 
						
							| 43 | 42 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  ∧  ( 𝑂 ‘ 𝑎 )  =  +∞ )  →  +∞  =  ( 𝑂 ‘ 𝑎 ) ) | 
						
							| 44 | 40 43 | breqtrd | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  ∧  ( 𝑂 ‘ 𝑎 )  =  +∞ )  →  ( ( 𝑂 ‘ ( 𝑎  ∩  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) )  ≤  ( 𝑂 ‘ 𝑎 ) ) | 
						
							| 45 |  | simpl | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  ∧  ¬  ( 𝑂 ‘ 𝑎 )  =  +∞ )  →  ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 ) ) | 
						
							| 46 |  | rge0ssre | ⊢ ( 0 [,) +∞ )  ⊆  ℝ | 
						
							| 47 |  | 0xr | ⊢ 0  ∈  ℝ* | 
						
							| 48 | 47 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  ∧  ¬  ( 𝑂 ‘ 𝑎 )  =  +∞ )  →  0  ∈  ℝ* ) | 
						
							| 49 |  | pnfxr | ⊢ +∞  ∈  ℝ* | 
						
							| 50 | 49 | a1i | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  ∧  ¬  ( 𝑂 ‘ 𝑎 )  =  +∞ )  →  +∞  ∈  ℝ* ) | 
						
							| 51 | 45 36 | syl | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  ∧  ¬  ( 𝑂 ‘ 𝑎 )  =  +∞ )  →  ( 𝑂 ‘ 𝑎 )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 52 | 41 | necon3bi | ⊢ ( ¬  ( 𝑂 ‘ 𝑎 )  =  +∞  →  ( 𝑂 ‘ 𝑎 )  ≠  +∞ ) | 
						
							| 53 | 52 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  ∧  ¬  ( 𝑂 ‘ 𝑎 )  =  +∞ )  →  ( 𝑂 ‘ 𝑎 )  ≠  +∞ ) | 
						
							| 54 | 48 50 51 53 | eliccelicod | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  ∧  ¬  ( 𝑂 ‘ 𝑎 )  =  +∞ )  →  ( 𝑂 ‘ 𝑎 )  ∈  ( 0 [,) +∞ ) ) | 
						
							| 55 | 46 54 | sselid | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  ∧  ¬  ( 𝑂 ‘ 𝑎 )  =  +∞ )  →  ( 𝑂 ‘ 𝑎 )  ∈  ℝ ) | 
						
							| 56 | 24 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  ∧  ( 𝑂 ‘ 𝑎 )  ∈  ℝ )  ∧  𝑥  ∈  ℝ+ )  →  𝑂  ∈  OutMeas ) | 
						
							| 57 | 31 | ad2antrr | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  ∧  ( 𝑂 ‘ 𝑎 )  ∈  ℝ )  ∧  𝑥  ∈  ℝ+ )  →  𝑎  ⊆  ∪  dom  𝑂 ) | 
						
							| 58 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  ∧  ( 𝑂 ‘ 𝑎 )  ∈  ℝ )  →  ( 𝑂 ‘ 𝑎 )  ∈  ℝ ) | 
						
							| 59 | 58 | adantr | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  ∧  ( 𝑂 ‘ 𝑎 )  ∈  ℝ )  ∧  𝑥  ∈  ℝ+ )  →  ( 𝑂 ‘ 𝑎 )  ∈  ℝ ) | 
						
							| 60 | 3 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  ∧  ( 𝑂 ‘ 𝑎 )  ∈  ℝ )  ∧  𝑥  ∈  ℝ+ )  →  𝑀  ∈  ℤ ) | 
						
							| 61 | 5 | ad3antrrr | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  ∧  ( 𝑂 ‘ 𝑎 )  ∈  ℝ )  ∧  𝑥  ∈  ℝ+ )  →  𝐸 : 𝑍 ⟶ 𝑆 ) | 
						
							| 62 |  | simpr | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  ∧  ( 𝑂 ‘ 𝑎 )  ∈  ℝ )  ∧  𝑥  ∈  ℝ+ )  →  𝑥  ∈  ℝ+ ) | 
						
							| 63 |  | eqid | ⊢ ( 𝑛  ∈  𝑍  ↦  ∪  𝑖  ∈  ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑖 ) )  =  ( 𝑛  ∈  𝑍  ↦  ∪  𝑖  ∈  ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) | 
						
							| 64 |  | fveq2 | ⊢ ( 𝑚  =  𝑛  →  ( 𝐸 ‘ 𝑚 )  =  ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 65 |  | oveq2 | ⊢ ( 𝑚  =  𝑛  →  ( 𝑀 ..^ 𝑚 )  =  ( 𝑀 ..^ 𝑛 ) ) | 
						
							| 66 | 65 | iuneq1d | ⊢ ( 𝑚  =  𝑛  →  ∪  𝑖  ∈  ( 𝑀 ..^ 𝑚 ) ( 𝐸 ‘ 𝑖 )  =  ∪  𝑖  ∈  ( 𝑀 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) | 
						
							| 67 | 64 66 | difeq12d | ⊢ ( 𝑚  =  𝑛  →  ( ( 𝐸 ‘ 𝑚 )  ∖  ∪  𝑖  ∈  ( 𝑀 ..^ 𝑚 ) ( 𝐸 ‘ 𝑖 ) )  =  ( ( 𝐸 ‘ 𝑛 )  ∖  ∪  𝑖  ∈  ( 𝑀 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ) | 
						
							| 68 | 67 | cbvmptv | ⊢ ( 𝑚  ∈  𝑍  ↦  ( ( 𝐸 ‘ 𝑚 )  ∖  ∪  𝑖  ∈  ( 𝑀 ..^ 𝑚 ) ( 𝐸 ‘ 𝑖 ) ) )  =  ( 𝑛  ∈  𝑍  ↦  ( ( 𝐸 ‘ 𝑛 )  ∖  ∪  𝑖  ∈  ( 𝑀 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ) | 
						
							| 69 | 56 2 6 57 59 60 4 61 62 63 68 | carageniuncllem2 | ⊢ ( ( ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  ∧  ( 𝑂 ‘ 𝑎 )  ∈  ℝ )  ∧  𝑥  ∈  ℝ+ )  →  ( ( 𝑂 ‘ ( 𝑎  ∩  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) )  ≤  ( ( 𝑂 ‘ 𝑎 )  +  𝑥 ) ) | 
						
							| 70 | 69 | ralrimiva | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  ∧  ( 𝑂 ‘ 𝑎 )  ∈  ℝ )  →  ∀ 𝑥  ∈  ℝ+ ( ( 𝑂 ‘ ( 𝑎  ∩  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) )  ≤  ( ( 𝑂 ‘ 𝑎 )  +  𝑥 ) ) | 
						
							| 71 | 35 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  ∧  ( 𝑂 ‘ 𝑎 )  ∈  ℝ )  →  ( ( 𝑂 ‘ ( 𝑎  ∩  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) )  ∈  ℝ* ) | 
						
							| 72 |  | xralrple | ⊢ ( ( ( ( 𝑂 ‘ ( 𝑎  ∩  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) )  ∈  ℝ*  ∧  ( 𝑂 ‘ 𝑎 )  ∈  ℝ )  →  ( ( ( 𝑂 ‘ ( 𝑎  ∩  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) )  ≤  ( 𝑂 ‘ 𝑎 )  ↔  ∀ 𝑥  ∈  ℝ+ ( ( 𝑂 ‘ ( 𝑎  ∩  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) )  ≤  ( ( 𝑂 ‘ 𝑎 )  +  𝑥 ) ) ) | 
						
							| 73 | 71 58 72 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  ∧  ( 𝑂 ‘ 𝑎 )  ∈  ℝ )  →  ( ( ( 𝑂 ‘ ( 𝑎  ∩  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) )  ≤  ( 𝑂 ‘ 𝑎 )  ↔  ∀ 𝑥  ∈  ℝ+ ( ( 𝑂 ‘ ( 𝑎  ∩  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) )  ≤  ( ( 𝑂 ‘ 𝑎 )  +  𝑥 ) ) ) | 
						
							| 74 | 70 73 | mpbird | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  ∧  ( 𝑂 ‘ 𝑎 )  ∈  ℝ )  →  ( ( 𝑂 ‘ ( 𝑎  ∩  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) )  ≤  ( 𝑂 ‘ 𝑎 ) ) | 
						
							| 75 | 45 55 74 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  ∧  ¬  ( 𝑂 ‘ 𝑎 )  =  +∞ )  →  ( ( 𝑂 ‘ ( 𝑎  ∩  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) )  ≤  ( 𝑂 ‘ 𝑎 ) ) | 
						
							| 76 | 44 75 | pm2.61dan | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( ( 𝑂 ‘ ( 𝑎  ∩  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) )  ≤  ( 𝑂 ‘ 𝑎 ) ) | 
						
							| 77 | 24 6 31 | omelesplit | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( 𝑂 ‘ 𝑎 )  ≤  ( ( 𝑂 ‘ ( 𝑎  ∩  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ) | 
						
							| 78 | 35 37 76 77 | xrletrid | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  ∪  dom  𝑂 )  →  ( ( 𝑂 ‘ ( 𝑎  ∩  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) ) )  =  ( 𝑂 ‘ 𝑎 ) ) | 
						
							| 79 | 1 6 2 22 78 | carageneld | ⊢ ( 𝜑  →  ∪  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ∈  𝑆 ) |