| Step |
Hyp |
Ref |
Expression |
| 1 |
|
carageniuncl.o |
⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) |
| 2 |
|
carageniuncl.s |
⊢ 𝑆 = ( CaraGen ‘ 𝑂 ) |
| 3 |
|
carageniuncl.3 |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
| 4 |
|
carageniuncl.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
| 5 |
|
carageniuncl.e |
⊢ ( 𝜑 → 𝐸 : 𝑍 ⟶ 𝑆 ) |
| 6 |
|
eqid |
⊢ ∪ dom 𝑂 = ∪ dom 𝑂 |
| 7 |
5
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑛 ) ∈ 𝑆 ) |
| 8 |
|
elssuni |
⊢ ( ( 𝐸 ‘ 𝑛 ) ∈ 𝑆 → ( 𝐸 ‘ 𝑛 ) ⊆ ∪ 𝑆 ) |
| 9 |
7 8
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑛 ) ⊆ ∪ 𝑆 ) |
| 10 |
1 2
|
caragenuni |
⊢ ( 𝜑 → ∪ 𝑆 = ∪ dom 𝑂 ) |
| 11 |
10
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ∪ 𝑆 = ∪ dom 𝑂 ) |
| 12 |
9 11
|
sseqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑛 ) ⊆ ∪ dom 𝑂 ) |
| 13 |
12
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ⊆ ∪ dom 𝑂 ) |
| 14 |
|
iunss |
⊢ ( ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ⊆ ∪ dom 𝑂 ↔ ∀ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ⊆ ∪ dom 𝑂 ) |
| 15 |
13 14
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ⊆ ∪ dom 𝑂 ) |
| 16 |
4
|
fvexi |
⊢ 𝑍 ∈ V |
| 17 |
|
fvex |
⊢ ( 𝐸 ‘ 𝑛 ) ∈ V |
| 18 |
16 17
|
iunex |
⊢ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ∈ V |
| 19 |
18
|
a1i |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ∈ V ) |
| 20 |
|
elpwg |
⊢ ( ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ∈ V → ( ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ∈ 𝒫 ∪ dom 𝑂 ↔ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ⊆ ∪ dom 𝑂 ) ) |
| 21 |
19 20
|
syl |
⊢ ( 𝜑 → ( ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ∈ 𝒫 ∪ dom 𝑂 ↔ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ⊆ ∪ dom 𝑂 ) ) |
| 22 |
15 21
|
mpbird |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ∈ 𝒫 ∪ dom 𝑂 ) |
| 23 |
|
iccssxr |
⊢ ( 0 [,] +∞ ) ⊆ ℝ* |
| 24 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → 𝑂 ∈ OutMeas ) |
| 25 |
|
elpwi |
⊢ ( 𝑎 ∈ 𝒫 ∪ dom 𝑂 → 𝑎 ⊆ ∪ dom 𝑂 ) |
| 26 |
|
ssinss1 |
⊢ ( 𝑎 ⊆ ∪ dom 𝑂 → ( 𝑎 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ⊆ ∪ dom 𝑂 ) |
| 27 |
25 26
|
syl |
⊢ ( 𝑎 ∈ 𝒫 ∪ dom 𝑂 → ( 𝑎 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ⊆ ∪ dom 𝑂 ) |
| 28 |
27
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( 𝑎 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ⊆ ∪ dom 𝑂 ) |
| 29 |
24 6 28
|
omecl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( 𝑂 ‘ ( 𝑎 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 30 |
23 29
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( 𝑂 ‘ ( 𝑎 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ∈ ℝ* ) |
| 31 |
25
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → 𝑎 ⊆ ∪ dom 𝑂 ) |
| 32 |
31
|
ssdifssd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( 𝑎 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ⊆ ∪ dom 𝑂 ) |
| 33 |
24 6 32
|
omecl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( 𝑂 ‘ ( 𝑎 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ∈ ( 0 [,] +∞ ) ) |
| 34 |
23 33
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( 𝑂 ‘ ( 𝑎 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ∈ ℝ* ) |
| 35 |
30 34
|
xaddcld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( ( 𝑂 ‘ ( 𝑎 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ* ) |
| 36 |
24 6 31
|
omecl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( 𝑂 ‘ 𝑎 ) ∈ ( 0 [,] +∞ ) ) |
| 37 |
23 36
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( 𝑂 ‘ 𝑎 ) ∈ ℝ* ) |
| 38 |
|
pnfge |
⊢ ( ( ( 𝑂 ‘ ( 𝑎 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ* → ( ( 𝑂 ‘ ( 𝑎 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ +∞ ) |
| 39 |
35 38
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( ( 𝑂 ‘ ( 𝑎 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ +∞ ) |
| 40 |
39
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ 𝑎 ) = +∞ ) → ( ( 𝑂 ‘ ( 𝑎 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ +∞ ) |
| 41 |
|
id |
⊢ ( ( 𝑂 ‘ 𝑎 ) = +∞ → ( 𝑂 ‘ 𝑎 ) = +∞ ) |
| 42 |
41
|
eqcomd |
⊢ ( ( 𝑂 ‘ 𝑎 ) = +∞ → +∞ = ( 𝑂 ‘ 𝑎 ) ) |
| 43 |
42
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ 𝑎 ) = +∞ ) → +∞ = ( 𝑂 ‘ 𝑎 ) ) |
| 44 |
40 43
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ 𝑎 ) = +∞ ) → ( ( 𝑂 ‘ ( 𝑎 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ ( 𝑂 ‘ 𝑎 ) ) |
| 45 |
|
simpl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) ∧ ¬ ( 𝑂 ‘ 𝑎 ) = +∞ ) → ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) ) |
| 46 |
|
rge0ssre |
⊢ ( 0 [,) +∞ ) ⊆ ℝ |
| 47 |
|
0xr |
⊢ 0 ∈ ℝ* |
| 48 |
47
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) ∧ ¬ ( 𝑂 ‘ 𝑎 ) = +∞ ) → 0 ∈ ℝ* ) |
| 49 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
| 50 |
49
|
a1i |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) ∧ ¬ ( 𝑂 ‘ 𝑎 ) = +∞ ) → +∞ ∈ ℝ* ) |
| 51 |
45 36
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) ∧ ¬ ( 𝑂 ‘ 𝑎 ) = +∞ ) → ( 𝑂 ‘ 𝑎 ) ∈ ( 0 [,] +∞ ) ) |
| 52 |
41
|
necon3bi |
⊢ ( ¬ ( 𝑂 ‘ 𝑎 ) = +∞ → ( 𝑂 ‘ 𝑎 ) ≠ +∞ ) |
| 53 |
52
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) ∧ ¬ ( 𝑂 ‘ 𝑎 ) = +∞ ) → ( 𝑂 ‘ 𝑎 ) ≠ +∞ ) |
| 54 |
48 50 51 53
|
eliccelicod |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) ∧ ¬ ( 𝑂 ‘ 𝑎 ) = +∞ ) → ( 𝑂 ‘ 𝑎 ) ∈ ( 0 [,) +∞ ) ) |
| 55 |
46 54
|
sselid |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) ∧ ¬ ( 𝑂 ‘ 𝑎 ) = +∞ ) → ( 𝑂 ‘ 𝑎 ) ∈ ℝ ) |
| 56 |
24
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ 𝑎 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → 𝑂 ∈ OutMeas ) |
| 57 |
31
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ 𝑎 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → 𝑎 ⊆ ∪ dom 𝑂 ) |
| 58 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ 𝑎 ) ∈ ℝ ) → ( 𝑂 ‘ 𝑎 ) ∈ ℝ ) |
| 59 |
58
|
adantr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ 𝑎 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ( 𝑂 ‘ 𝑎 ) ∈ ℝ ) |
| 60 |
3
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ 𝑎 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → 𝑀 ∈ ℤ ) |
| 61 |
5
|
ad3antrrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ 𝑎 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → 𝐸 : 𝑍 ⟶ 𝑆 ) |
| 62 |
|
simpr |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ 𝑎 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → 𝑥 ∈ ℝ+ ) |
| 63 |
|
eqid |
⊢ ( 𝑛 ∈ 𝑍 ↦ ∪ 𝑖 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) = ( 𝑛 ∈ 𝑍 ↦ ∪ 𝑖 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) |
| 64 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝐸 ‘ 𝑚 ) = ( 𝐸 ‘ 𝑛 ) ) |
| 65 |
|
oveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝑀 ..^ 𝑚 ) = ( 𝑀 ..^ 𝑛 ) ) |
| 66 |
65
|
iuneq1d |
⊢ ( 𝑚 = 𝑛 → ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑚 ) ( 𝐸 ‘ 𝑖 ) = ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) |
| 67 |
64 66
|
difeq12d |
⊢ ( 𝑚 = 𝑛 → ( ( 𝐸 ‘ 𝑚 ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑚 ) ( 𝐸 ‘ 𝑖 ) ) = ( ( 𝐸 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ) |
| 68 |
67
|
cbvmptv |
⊢ ( 𝑚 ∈ 𝑍 ↦ ( ( 𝐸 ‘ 𝑚 ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑚 ) ( 𝐸 ‘ 𝑖 ) ) ) = ( 𝑛 ∈ 𝑍 ↦ ( ( 𝐸 ‘ 𝑛 ) ∖ ∪ 𝑖 ∈ ( 𝑀 ..^ 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) ) |
| 69 |
56 2 6 57 59 60 4 61 62 63 68
|
carageniuncllem2 |
⊢ ( ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ 𝑎 ) ∈ ℝ ) ∧ 𝑥 ∈ ℝ+ ) → ( ( 𝑂 ‘ ( 𝑎 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ ( ( 𝑂 ‘ 𝑎 ) + 𝑥 ) ) |
| 70 |
69
|
ralrimiva |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ 𝑎 ) ∈ ℝ ) → ∀ 𝑥 ∈ ℝ+ ( ( 𝑂 ‘ ( 𝑎 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ ( ( 𝑂 ‘ 𝑎 ) + 𝑥 ) ) |
| 71 |
35
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ 𝑎 ) ∈ ℝ ) → ( ( 𝑂 ‘ ( 𝑎 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ* ) |
| 72 |
|
xralrple |
⊢ ( ( ( ( 𝑂 ‘ ( 𝑎 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ∈ ℝ* ∧ ( 𝑂 ‘ 𝑎 ) ∈ ℝ ) → ( ( ( 𝑂 ‘ ( 𝑎 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ ( 𝑂 ‘ 𝑎 ) ↔ ∀ 𝑥 ∈ ℝ+ ( ( 𝑂 ‘ ( 𝑎 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ ( ( 𝑂 ‘ 𝑎 ) + 𝑥 ) ) ) |
| 73 |
71 58 72
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ 𝑎 ) ∈ ℝ ) → ( ( ( 𝑂 ‘ ( 𝑎 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ ( 𝑂 ‘ 𝑎 ) ↔ ∀ 𝑥 ∈ ℝ+ ( ( 𝑂 ‘ ( 𝑎 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ ( ( 𝑂 ‘ 𝑎 ) + 𝑥 ) ) ) |
| 74 |
70 73
|
mpbird |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ 𝑎 ) ∈ ℝ ) → ( ( 𝑂 ‘ ( 𝑎 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ ( 𝑂 ‘ 𝑎 ) ) |
| 75 |
45 55 74
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) ∧ ¬ ( 𝑂 ‘ 𝑎 ) = +∞ ) → ( ( 𝑂 ‘ ( 𝑎 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ ( 𝑂 ‘ 𝑎 ) ) |
| 76 |
44 75
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( ( 𝑂 ‘ ( 𝑎 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ≤ ( 𝑂 ‘ 𝑎 ) ) |
| 77 |
24 6 31
|
omelesplit |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( 𝑂 ‘ 𝑎 ) ≤ ( ( 𝑂 ‘ ( 𝑎 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
| 78 |
35 37 76 77
|
xrletrid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom 𝑂 ) → ( ( 𝑂 ‘ ( 𝑎 ∩ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) ) ) = ( 𝑂 ‘ 𝑎 ) ) |
| 79 |
1 6 2 22 78
|
carageneld |
⊢ ( 𝜑 → ∪ 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ∈ 𝑆 ) |