| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caragenunicl.o | ⊢ ( 𝜑  →  𝑂  ∈  OutMeas ) | 
						
							| 2 |  | caragenunicl.s | ⊢ 𝑆  =  ( CaraGen ‘ 𝑂 ) | 
						
							| 3 |  | caragenunicl.y | ⊢ ( 𝜑  →  𝑋  ⊆  𝑆 ) | 
						
							| 4 |  | caragenunicl.ctb | ⊢ ( 𝜑  →  𝑋  ≼  ω ) | 
						
							| 5 |  | unieq | ⊢ ( 𝑋  =  ∅  →  ∪  𝑋  =  ∪  ∅ ) | 
						
							| 6 |  | uni0 | ⊢ ∪  ∅  =  ∅ | 
						
							| 7 | 5 6 | eqtrdi | ⊢ ( 𝑋  =  ∅  →  ∪  𝑋  =  ∅ ) | 
						
							| 8 | 7 | adantl | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ∪  𝑋  =  ∅ ) | 
						
							| 9 | 1 2 | caragen0 | ⊢ ( 𝜑  →  ∅  ∈  𝑆 ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ∅  ∈  𝑆 ) | 
						
							| 11 | 8 10 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ∪  𝑋  ∈  𝑆 ) | 
						
							| 12 |  | simpl | ⊢ ( ( 𝜑  ∧  ¬  𝑋  =  ∅ )  →  𝜑 ) | 
						
							| 13 |  | neqne | ⊢ ( ¬  𝑋  =  ∅  →  𝑋  ≠  ∅ ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝜑  ∧  ¬  𝑋  =  ∅ )  →  𝑋  ≠  ∅ ) | 
						
							| 15 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  𝑋  ≠  ∅ ) | 
						
							| 16 |  | reldom | ⊢ Rel   ≼ | 
						
							| 17 |  | brrelex1 | ⊢ ( ( Rel   ≼   ∧  𝑋  ≼  ω )  →  𝑋  ∈  V ) | 
						
							| 18 | 16 17 | mpan | ⊢ ( 𝑋  ≼  ω  →  𝑋  ∈  V ) | 
						
							| 19 | 4 18 | syl | ⊢ ( 𝜑  →  𝑋  ∈  V ) | 
						
							| 20 | 19 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  𝑋  ∈  V ) | 
						
							| 21 |  | 0sdomg | ⊢ ( 𝑋  ∈  V  →  ( ∅  ≺  𝑋  ↔  𝑋  ≠  ∅ ) ) | 
						
							| 22 | 20 21 | syl | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  ( ∅  ≺  𝑋  ↔  𝑋  ≠  ∅ ) ) | 
						
							| 23 | 15 22 | mpbird | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  ∅  ≺  𝑋 ) | 
						
							| 24 |  | nnenom | ⊢ ℕ  ≈  ω | 
						
							| 25 | 24 | ensymi | ⊢ ω  ≈  ℕ | 
						
							| 26 | 25 | a1i | ⊢ ( 𝜑  →  ω  ≈  ℕ ) | 
						
							| 27 |  | domentr | ⊢ ( ( 𝑋  ≼  ω  ∧  ω  ≈  ℕ )  →  𝑋  ≼  ℕ ) | 
						
							| 28 | 4 26 27 | syl2anc | ⊢ ( 𝜑  →  𝑋  ≼  ℕ ) | 
						
							| 29 | 28 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  𝑋  ≼  ℕ ) | 
						
							| 30 |  | fodomr | ⊢ ( ( ∅  ≺  𝑋  ∧  𝑋  ≼  ℕ )  →  ∃ 𝑓 𝑓 : ℕ –onto→ 𝑋 ) | 
						
							| 31 | 23 29 30 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  ∃ 𝑓 𝑓 : ℕ –onto→ 𝑋 ) | 
						
							| 32 |  | founiiun | ⊢ ( 𝑓 : ℕ –onto→ 𝑋  →  ∪  𝑋  =  ∪  𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 ) ) | 
						
							| 33 | 32 | adantl | ⊢ ( ( 𝜑  ∧  𝑓 : ℕ –onto→ 𝑋 )  →  ∪  𝑋  =  ∪  𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 ) ) | 
						
							| 34 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑓 : ℕ –onto→ 𝑋 )  →  𝑂  ∈  OutMeas ) | 
						
							| 35 |  | 1zzd | ⊢ ( ( 𝜑  ∧  𝑓 : ℕ –onto→ 𝑋 )  →  1  ∈  ℤ ) | 
						
							| 36 |  | nnuz | ⊢ ℕ  =  ( ℤ≥ ‘ 1 ) | 
						
							| 37 |  | fof | ⊢ ( 𝑓 : ℕ –onto→ 𝑋  →  𝑓 : ℕ ⟶ 𝑋 ) | 
						
							| 38 | 37 | adantl | ⊢ ( ( 𝜑  ∧  𝑓 : ℕ –onto→ 𝑋 )  →  𝑓 : ℕ ⟶ 𝑋 ) | 
						
							| 39 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑓 : ℕ –onto→ 𝑋 )  →  𝑋  ⊆  𝑆 ) | 
						
							| 40 | 38 39 | fssd | ⊢ ( ( 𝜑  ∧  𝑓 : ℕ –onto→ 𝑋 )  →  𝑓 : ℕ ⟶ 𝑆 ) | 
						
							| 41 | 34 2 35 36 40 | carageniuncl | ⊢ ( ( 𝜑  ∧  𝑓 : ℕ –onto→ 𝑋 )  →  ∪  𝑛  ∈  ℕ ( 𝑓 ‘ 𝑛 )  ∈  𝑆 ) | 
						
							| 42 | 33 41 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑓 : ℕ –onto→ 𝑋 )  →  ∪  𝑋  ∈  𝑆 ) | 
						
							| 43 | 42 | ex | ⊢ ( 𝜑  →  ( 𝑓 : ℕ –onto→ 𝑋  →  ∪  𝑋  ∈  𝑆 ) ) | 
						
							| 44 | 43 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  ( 𝑓 : ℕ –onto→ 𝑋  →  ∪  𝑋  ∈  𝑆 ) ) | 
						
							| 45 | 44 | exlimdv | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  ( ∃ 𝑓 𝑓 : ℕ –onto→ 𝑋  →  ∪  𝑋  ∈  𝑆 ) ) | 
						
							| 46 | 31 45 | mpd | ⊢ ( ( 𝜑  ∧  𝑋  ≠  ∅ )  →  ∪  𝑋  ∈  𝑆 ) | 
						
							| 47 | 12 14 46 | syl2anc | ⊢ ( ( 𝜑  ∧  ¬  𝑋  =  ∅ )  →  ∪  𝑋  ∈  𝑆 ) | 
						
							| 48 | 11 47 | pm2.61dan | ⊢ ( 𝜑  →  ∪  𝑋  ∈  𝑆 ) |