Step |
Hyp |
Ref |
Expression |
1 |
|
caragenunicl.o |
⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) |
2 |
|
caragenunicl.s |
⊢ 𝑆 = ( CaraGen ‘ 𝑂 ) |
3 |
|
caragenunicl.y |
⊢ ( 𝜑 → 𝑋 ⊆ 𝑆 ) |
4 |
|
caragenunicl.ctb |
⊢ ( 𝜑 → 𝑋 ≼ ω ) |
5 |
|
unieq |
⊢ ( 𝑋 = ∅ → ∪ 𝑋 = ∪ ∅ ) |
6 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
7 |
5 6
|
eqtrdi |
⊢ ( 𝑋 = ∅ → ∪ 𝑋 = ∅ ) |
8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ∪ 𝑋 = ∅ ) |
9 |
1 2
|
caragen0 |
⊢ ( 𝜑 → ∅ ∈ 𝑆 ) |
10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ∅ ∈ 𝑆 ) |
11 |
8 10
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ∪ 𝑋 ∈ 𝑆 ) |
12 |
|
simpl |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝜑 ) |
13 |
|
neqne |
⊢ ( ¬ 𝑋 = ∅ → 𝑋 ≠ ∅ ) |
14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝑋 ≠ ∅ ) |
15 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → 𝑋 ≠ ∅ ) |
16 |
|
reldom |
⊢ Rel ≼ |
17 |
|
brrelex1 |
⊢ ( ( Rel ≼ ∧ 𝑋 ≼ ω ) → 𝑋 ∈ V ) |
18 |
16 17
|
mpan |
⊢ ( 𝑋 ≼ ω → 𝑋 ∈ V ) |
19 |
4 18
|
syl |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
20 |
19
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → 𝑋 ∈ V ) |
21 |
|
0sdomg |
⊢ ( 𝑋 ∈ V → ( ∅ ≺ 𝑋 ↔ 𝑋 ≠ ∅ ) ) |
22 |
20 21
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ( ∅ ≺ 𝑋 ↔ 𝑋 ≠ ∅ ) ) |
23 |
15 22
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ∅ ≺ 𝑋 ) |
24 |
|
nnenom |
⊢ ℕ ≈ ω |
25 |
24
|
ensymi |
⊢ ω ≈ ℕ |
26 |
25
|
a1i |
⊢ ( 𝜑 → ω ≈ ℕ ) |
27 |
|
domentr |
⊢ ( ( 𝑋 ≼ ω ∧ ω ≈ ℕ ) → 𝑋 ≼ ℕ ) |
28 |
4 26 27
|
syl2anc |
⊢ ( 𝜑 → 𝑋 ≼ ℕ ) |
29 |
28
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → 𝑋 ≼ ℕ ) |
30 |
|
fodomr |
⊢ ( ( ∅ ≺ 𝑋 ∧ 𝑋 ≼ ℕ ) → ∃ 𝑓 𝑓 : ℕ –onto→ 𝑋 ) |
31 |
23 29 30
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ∃ 𝑓 𝑓 : ℕ –onto→ 𝑋 ) |
32 |
|
founiiun |
⊢ ( 𝑓 : ℕ –onto→ 𝑋 → ∪ 𝑋 = ∪ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ) |
33 |
32
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 : ℕ –onto→ 𝑋 ) → ∪ 𝑋 = ∪ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ) |
34 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 : ℕ –onto→ 𝑋 ) → 𝑂 ∈ OutMeas ) |
35 |
|
1zzd |
⊢ ( ( 𝜑 ∧ 𝑓 : ℕ –onto→ 𝑋 ) → 1 ∈ ℤ ) |
36 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
37 |
|
fof |
⊢ ( 𝑓 : ℕ –onto→ 𝑋 → 𝑓 : ℕ ⟶ 𝑋 ) |
38 |
37
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 : ℕ –onto→ 𝑋 ) → 𝑓 : ℕ ⟶ 𝑋 ) |
39 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑓 : ℕ –onto→ 𝑋 ) → 𝑋 ⊆ 𝑆 ) |
40 |
38 39
|
fssd |
⊢ ( ( 𝜑 ∧ 𝑓 : ℕ –onto→ 𝑋 ) → 𝑓 : ℕ ⟶ 𝑆 ) |
41 |
34 2 35 36 40
|
carageniuncl |
⊢ ( ( 𝜑 ∧ 𝑓 : ℕ –onto→ 𝑋 ) → ∪ 𝑛 ∈ ℕ ( 𝑓 ‘ 𝑛 ) ∈ 𝑆 ) |
42 |
33 41
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑓 : ℕ –onto→ 𝑋 ) → ∪ 𝑋 ∈ 𝑆 ) |
43 |
42
|
ex |
⊢ ( 𝜑 → ( 𝑓 : ℕ –onto→ 𝑋 → ∪ 𝑋 ∈ 𝑆 ) ) |
44 |
43
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ( 𝑓 : ℕ –onto→ 𝑋 → ∪ 𝑋 ∈ 𝑆 ) ) |
45 |
44
|
exlimdv |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ( ∃ 𝑓 𝑓 : ℕ –onto→ 𝑋 → ∪ 𝑋 ∈ 𝑆 ) ) |
46 |
31 45
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑋 ≠ ∅ ) → ∪ 𝑋 ∈ 𝑆 ) |
47 |
12 14 46
|
syl2anc |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ∪ 𝑋 ∈ 𝑆 ) |
48 |
11 47
|
pm2.61dan |
⊢ ( 𝜑 → ∪ 𝑋 ∈ 𝑆 ) |