| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caragensal.o |
⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) |
| 2 |
|
caragensal.s |
⊢ 𝑆 = ( CaraGen ‘ 𝑂 ) |
| 3 |
1 2
|
caragen0 |
⊢ ( 𝜑 → ∅ ∈ 𝑆 ) |
| 4 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑂 ∈ OutMeas ) |
| 5 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → 𝑥 ∈ 𝑆 ) |
| 6 |
4 2 5
|
caragendifcl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝑆 ) → ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ) |
| 7 |
6
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ) |
| 8 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝑆 ) ∧ 𝑥 ≼ ω ) → 𝑂 ∈ OutMeas ) |
| 9 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝑆 → 𝑥 ⊆ 𝑆 ) |
| 10 |
9
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝑆 ) ∧ 𝑥 ≼ ω ) → 𝑥 ⊆ 𝑆 ) |
| 11 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝑆 ) ∧ 𝑥 ≼ ω ) → 𝑥 ≼ ω ) |
| 12 |
8 2 10 11
|
caragenunicl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝑆 ) ∧ 𝑥 ≼ ω ) → ∪ 𝑥 ∈ 𝑆 ) |
| 13 |
12
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 𝑆 ) → ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) |
| 14 |
13
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) |
| 15 |
3 7 14
|
3jca |
⊢ ( 𝜑 → ( ∅ ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) |
| 16 |
2
|
fvexi |
⊢ 𝑆 ∈ V |
| 17 |
16
|
a1i |
⊢ ( 𝜑 → 𝑆 ∈ V ) |
| 18 |
|
issal |
⊢ ( 𝑆 ∈ V → ( 𝑆 ∈ SAlg ↔ ( ∅ ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) |
| 19 |
17 18
|
syl |
⊢ ( 𝜑 → ( 𝑆 ∈ SAlg ↔ ( ∅ ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝑆 ( ∪ 𝑆 ∖ 𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → ∪ 𝑥 ∈ 𝑆 ) ) ) ) |
| 20 |
15 19
|
mpbird |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |