Metamath Proof Explorer


Theorem caragensal

Description: Caratheodory's method generates a sigma-algebra. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses caragensal.o ( 𝜑𝑂 ∈ OutMeas )
caragensal.s 𝑆 = ( CaraGen ‘ 𝑂 )
Assertion caragensal ( 𝜑𝑆 ∈ SAlg )

Proof

Step Hyp Ref Expression
1 caragensal.o ( 𝜑𝑂 ∈ OutMeas )
2 caragensal.s 𝑆 = ( CaraGen ‘ 𝑂 )
3 1 2 caragen0 ( 𝜑 → ∅ ∈ 𝑆 )
4 1 adantr ( ( 𝜑𝑥𝑆 ) → 𝑂 ∈ OutMeas )
5 simpr ( ( 𝜑𝑥𝑆 ) → 𝑥𝑆 )
6 4 2 5 caragendifcl ( ( 𝜑𝑥𝑆 ) → ( 𝑆𝑥 ) ∈ 𝑆 )
7 6 ralrimiva ( 𝜑 → ∀ 𝑥𝑆 ( 𝑆𝑥 ) ∈ 𝑆 )
8 1 ad2antrr ( ( ( 𝜑𝑥 ∈ 𝒫 𝑆 ) ∧ 𝑥 ≼ ω ) → 𝑂 ∈ OutMeas )
9 elpwi ( 𝑥 ∈ 𝒫 𝑆𝑥𝑆 )
10 9 ad2antlr ( ( ( 𝜑𝑥 ∈ 𝒫 𝑆 ) ∧ 𝑥 ≼ ω ) → 𝑥𝑆 )
11 simpr ( ( ( 𝜑𝑥 ∈ 𝒫 𝑆 ) ∧ 𝑥 ≼ ω ) → 𝑥 ≼ ω )
12 8 2 10 11 caragenunicl ( ( ( 𝜑𝑥 ∈ 𝒫 𝑆 ) ∧ 𝑥 ≼ ω ) → 𝑥𝑆 )
13 12 ex ( ( 𝜑𝑥 ∈ 𝒫 𝑆 ) → ( 𝑥 ≼ ω → 𝑥𝑆 ) )
14 13 ralrimiva ( 𝜑 → ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) )
15 3 7 14 3jca ( 𝜑 → ( ∅ ∈ 𝑆 ∧ ∀ 𝑥𝑆 ( 𝑆𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) )
16 2 fvexi 𝑆 ∈ V
17 16 a1i ( 𝜑𝑆 ∈ V )
18 issal ( 𝑆 ∈ V → ( 𝑆 ∈ SAlg ↔ ( ∅ ∈ 𝑆 ∧ ∀ 𝑥𝑆 ( 𝑆𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) )
19 17 18 syl ( 𝜑 → ( 𝑆 ∈ SAlg ↔ ( ∅ ∈ 𝑆 ∧ ∀ 𝑥𝑆 ( 𝑆𝑥 ) ∈ 𝑆 ∧ ∀ 𝑥 ∈ 𝒫 𝑆 ( 𝑥 ≼ ω → 𝑥𝑆 ) ) ) )
20 15 19 mpbird ( 𝜑𝑆 ∈ SAlg )