Step |
Hyp |
Ref |
Expression |
1 |
|
caratheodorylem1.o |
⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) |
2 |
|
caratheodorylem1.s |
⊢ 𝑆 = ( CaraGen ‘ 𝑂 ) |
3 |
|
caratheodorylem1.z |
⊢ 𝑍 = ( ℤ≥ ‘ 𝑀 ) |
4 |
|
caratheodorylem1.e |
⊢ ( 𝜑 → 𝐸 : 𝑍 ⟶ 𝑆 ) |
5 |
|
caratheodorylem1.dj |
⊢ ( 𝜑 → Disj 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ) |
6 |
|
caratheodorylem1.g |
⊢ 𝐺 = ( 𝑛 ∈ 𝑍 ↦ ∪ 𝑖 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) |
7 |
|
caratheodorylem1.n |
⊢ ( 𝜑 → 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
8 |
|
eluzfz2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
9 |
7 8
|
syl |
⊢ ( 𝜑 → 𝑁 ∈ ( 𝑀 ... 𝑁 ) ) |
10 |
|
id |
⊢ ( 𝜑 → 𝜑 ) |
11 |
|
2fveq3 |
⊢ ( 𝑗 = 𝑀 → ( 𝑂 ‘ ( 𝐺 ‘ 𝑗 ) ) = ( 𝑂 ‘ ( 𝐺 ‘ 𝑀 ) ) ) |
12 |
|
oveq2 |
⊢ ( 𝑗 = 𝑀 → ( 𝑀 ... 𝑗 ) = ( 𝑀 ... 𝑀 ) ) |
13 |
12
|
mpteq1d |
⊢ ( 𝑗 = 𝑀 → ( 𝑛 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ( 𝑀 ... 𝑀 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) |
14 |
13
|
fveq2d |
⊢ ( 𝑗 = 𝑀 → ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑀 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
15 |
11 14
|
eqeq12d |
⊢ ( 𝑗 = 𝑀 → ( ( 𝑂 ‘ ( 𝐺 ‘ 𝑗 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ↔ ( 𝑂 ‘ ( 𝐺 ‘ 𝑀 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑀 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) ) |
16 |
15
|
imbi2d |
⊢ ( 𝑗 = 𝑀 → ( ( 𝜑 → ( 𝑂 ‘ ( 𝐺 ‘ 𝑗 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) ↔ ( 𝜑 → ( 𝑂 ‘ ( 𝐺 ‘ 𝑀 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑀 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) ) ) |
17 |
|
2fveq3 |
⊢ ( 𝑗 = 𝑖 → ( 𝑂 ‘ ( 𝐺 ‘ 𝑗 ) ) = ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) ) |
18 |
|
oveq2 |
⊢ ( 𝑗 = 𝑖 → ( 𝑀 ... 𝑗 ) = ( 𝑀 ... 𝑖 ) ) |
19 |
18
|
mpteq1d |
⊢ ( 𝑗 = 𝑖 → ( 𝑛 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) |
20 |
19
|
fveq2d |
⊢ ( 𝑗 = 𝑖 → ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
21 |
17 20
|
eqeq12d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝑂 ‘ ( 𝐺 ‘ 𝑗 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ↔ ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) ) |
22 |
21
|
imbi2d |
⊢ ( 𝑗 = 𝑖 → ( ( 𝜑 → ( 𝑂 ‘ ( 𝐺 ‘ 𝑗 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) ↔ ( 𝜑 → ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) ) ) |
23 |
|
2fveq3 |
⊢ ( 𝑗 = ( 𝑖 + 1 ) → ( 𝑂 ‘ ( 𝐺 ‘ 𝑗 ) ) = ( 𝑂 ‘ ( 𝐺 ‘ ( 𝑖 + 1 ) ) ) ) |
24 |
|
oveq2 |
⊢ ( 𝑗 = ( 𝑖 + 1 ) → ( 𝑀 ... 𝑗 ) = ( 𝑀 ... ( 𝑖 + 1 ) ) ) |
25 |
24
|
mpteq1d |
⊢ ( 𝑗 = ( 𝑖 + 1 ) → ( 𝑛 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) |
26 |
25
|
fveq2d |
⊢ ( 𝑗 = ( 𝑖 + 1 ) → ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
27 |
23 26
|
eqeq12d |
⊢ ( 𝑗 = ( 𝑖 + 1 ) → ( ( 𝑂 ‘ ( 𝐺 ‘ 𝑗 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ↔ ( 𝑂 ‘ ( 𝐺 ‘ ( 𝑖 + 1 ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) ) |
28 |
27
|
imbi2d |
⊢ ( 𝑗 = ( 𝑖 + 1 ) → ( ( 𝜑 → ( 𝑂 ‘ ( 𝐺 ‘ 𝑗 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) ↔ ( 𝜑 → ( 𝑂 ‘ ( 𝐺 ‘ ( 𝑖 + 1 ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) ) ) |
29 |
|
2fveq3 |
⊢ ( 𝑗 = 𝑁 → ( 𝑂 ‘ ( 𝐺 ‘ 𝑗 ) ) = ( 𝑂 ‘ ( 𝐺 ‘ 𝑁 ) ) ) |
30 |
|
oveq2 |
⊢ ( 𝑗 = 𝑁 → ( 𝑀 ... 𝑗 ) = ( 𝑀 ... 𝑁 ) ) |
31 |
30
|
mpteq1d |
⊢ ( 𝑗 = 𝑁 → ( 𝑛 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) |
32 |
31
|
fveq2d |
⊢ ( 𝑗 = 𝑁 → ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
33 |
29 32
|
eqeq12d |
⊢ ( 𝑗 = 𝑁 → ( ( 𝑂 ‘ ( 𝐺 ‘ 𝑗 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ↔ ( 𝑂 ‘ ( 𝐺 ‘ 𝑁 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) ) |
34 |
33
|
imbi2d |
⊢ ( 𝑗 = 𝑁 → ( ( 𝜑 → ( 𝑂 ‘ ( 𝐺 ‘ 𝑗 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) ↔ ( 𝜑 → ( 𝑂 ‘ ( 𝐺 ‘ 𝑁 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) ) ) |
35 |
|
eluzel2 |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → 𝑀 ∈ ℤ ) |
36 |
7 35
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ℤ ) |
37 |
|
fzsn |
⊢ ( 𝑀 ∈ ℤ → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) |
38 |
36 37
|
syl |
⊢ ( 𝜑 → ( 𝑀 ... 𝑀 ) = { 𝑀 } ) |
39 |
38
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑛 ∈ ( 𝑀 ... 𝑀 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ { 𝑀 } ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) |
40 |
39
|
fveq2d |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑀 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ { 𝑀 } ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
41 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ { 𝑀 } ) → 𝑂 ∈ OutMeas ) |
42 |
|
eqid |
⊢ ∪ dom 𝑂 = ∪ dom 𝑂 |
43 |
2
|
caragenss |
⊢ ( 𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂 ) |
44 |
41 43
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ { 𝑀 } ) → 𝑆 ⊆ dom 𝑂 ) |
45 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ { 𝑀 } ) → 𝐸 : 𝑍 ⟶ 𝑆 ) |
46 |
|
elsni |
⊢ ( 𝑛 ∈ { 𝑀 } → 𝑛 = 𝑀 ) |
47 |
46
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ { 𝑀 } ) → 𝑛 = 𝑀 ) |
48 |
|
uzid |
⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
49 |
36 48
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
50 |
49 3
|
eleqtrrdi |
⊢ ( 𝜑 → 𝑀 ∈ 𝑍 ) |
51 |
50
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ { 𝑀 } ) → 𝑀 ∈ 𝑍 ) |
52 |
47 51
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ { 𝑀 } ) → 𝑛 ∈ 𝑍 ) |
53 |
45 52
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ { 𝑀 } ) → ( 𝐸 ‘ 𝑛 ) ∈ 𝑆 ) |
54 |
44 53
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ { 𝑀 } ) → ( 𝐸 ‘ 𝑛 ) ∈ dom 𝑂 ) |
55 |
|
elssuni |
⊢ ( ( 𝐸 ‘ 𝑛 ) ∈ dom 𝑂 → ( 𝐸 ‘ 𝑛 ) ⊆ ∪ dom 𝑂 ) |
56 |
54 55
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ { 𝑀 } ) → ( 𝐸 ‘ 𝑛 ) ⊆ ∪ dom 𝑂 ) |
57 |
41 42 56
|
omecl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ { 𝑀 } ) → ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ( 0 [,] +∞ ) ) |
58 |
|
eqid |
⊢ ( 𝑛 ∈ { 𝑀 } ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ { 𝑀 } ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) |
59 |
57 58
|
fmptd |
⊢ ( 𝜑 → ( 𝑛 ∈ { 𝑀 } ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) : { 𝑀 } ⟶ ( 0 [,] +∞ ) ) |
60 |
36 59
|
sge0sn |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ { 𝑀 } ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = ( ( 𝑛 ∈ { 𝑀 } ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ‘ 𝑀 ) ) |
61 |
|
eqidd |
⊢ ( 𝜑 → ( 𝑛 ∈ { 𝑀 } ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ { 𝑀 } ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) |
62 |
38
|
iuneq1d |
⊢ ( 𝜑 → ∪ 𝑖 ∈ ( 𝑀 ... 𝑀 ) ( 𝐸 ‘ 𝑖 ) = ∪ 𝑖 ∈ { 𝑀 } ( 𝐸 ‘ 𝑖 ) ) |
63 |
|
fveq2 |
⊢ ( 𝑖 = 𝑀 → ( 𝐸 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑀 ) ) |
64 |
63
|
iunxsng |
⊢ ( 𝑀 ∈ 𝑍 → ∪ 𝑖 ∈ { 𝑀 } ( 𝐸 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑀 ) ) |
65 |
50 64
|
syl |
⊢ ( 𝜑 → ∪ 𝑖 ∈ { 𝑀 } ( 𝐸 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑀 ) ) |
66 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑀 ) = ( 𝐸 ‘ 𝑀 ) ) |
67 |
62 65 66
|
3eqtrrd |
⊢ ( 𝜑 → ( 𝐸 ‘ 𝑀 ) = ∪ 𝑖 ∈ ( 𝑀 ... 𝑀 ) ( 𝐸 ‘ 𝑖 ) ) |
68 |
67
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 = 𝑀 ) → ( 𝐸 ‘ 𝑀 ) = ∪ 𝑖 ∈ ( 𝑀 ... 𝑀 ) ( 𝐸 ‘ 𝑖 ) ) |
69 |
|
fveq2 |
⊢ ( 𝑛 = 𝑀 → ( 𝐸 ‘ 𝑛 ) = ( 𝐸 ‘ 𝑀 ) ) |
70 |
69
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 = 𝑀 ) → ( 𝐸 ‘ 𝑛 ) = ( 𝐸 ‘ 𝑀 ) ) |
71 |
|
oveq2 |
⊢ ( 𝑛 = 𝑀 → ( 𝑀 ... 𝑛 ) = ( 𝑀 ... 𝑀 ) ) |
72 |
71
|
iuneq1d |
⊢ ( 𝑛 = 𝑀 → ∪ 𝑖 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑖 ) = ∪ 𝑖 ∈ ( 𝑀 ... 𝑀 ) ( 𝐸 ‘ 𝑖 ) ) |
73 |
|
ovex |
⊢ ( 𝑀 ... 𝑀 ) ∈ V |
74 |
|
fvex |
⊢ ( 𝐸 ‘ 𝑖 ) ∈ V |
75 |
73 74
|
iunex |
⊢ ∪ 𝑖 ∈ ( 𝑀 ... 𝑀 ) ( 𝐸 ‘ 𝑖 ) ∈ V |
76 |
75
|
a1i |
⊢ ( 𝜑 → ∪ 𝑖 ∈ ( 𝑀 ... 𝑀 ) ( 𝐸 ‘ 𝑖 ) ∈ V ) |
77 |
6 72 50 76
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐺 ‘ 𝑀 ) = ∪ 𝑖 ∈ ( 𝑀 ... 𝑀 ) ( 𝐸 ‘ 𝑖 ) ) |
78 |
77
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 = 𝑀 ) → ( 𝐺 ‘ 𝑀 ) = ∪ 𝑖 ∈ ( 𝑀 ... 𝑀 ) ( 𝐸 ‘ 𝑖 ) ) |
79 |
68 70 78
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑛 = 𝑀 ) → ( 𝐸 ‘ 𝑛 ) = ( 𝐺 ‘ 𝑀 ) ) |
80 |
79
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 = 𝑀 ) → ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) = ( 𝑂 ‘ ( 𝐺 ‘ 𝑀 ) ) ) |
81 |
|
snidg |
⊢ ( 𝑀 ∈ 𝑍 → 𝑀 ∈ { 𝑀 } ) |
82 |
50 81
|
syl |
⊢ ( 𝜑 → 𝑀 ∈ { 𝑀 } ) |
83 |
|
fvexd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐺 ‘ 𝑀 ) ) ∈ V ) |
84 |
61 80 82 83
|
fvmptd |
⊢ ( 𝜑 → ( ( 𝑛 ∈ { 𝑀 } ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ‘ 𝑀 ) = ( 𝑂 ‘ ( 𝐺 ‘ 𝑀 ) ) ) |
85 |
40 60 84
|
3eqtrrd |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐺 ‘ 𝑀 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑀 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
86 |
85
|
a1i |
⊢ ( 𝑁 ∈ ( ℤ≥ ‘ 𝑀 ) → ( 𝜑 → ( 𝑂 ‘ ( 𝐺 ‘ 𝑀 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑀 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) ) |
87 |
|
simp3 |
⊢ ( ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( 𝜑 → ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) ∧ 𝜑 ) → 𝜑 ) |
88 |
|
simp1 |
⊢ ( ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( 𝜑 → ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) ∧ 𝜑 ) → 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) |
89 |
|
id |
⊢ ( ( 𝜑 → ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) → ( 𝜑 → ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) ) |
90 |
89
|
imp |
⊢ ( ( ( 𝜑 → ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) ∧ 𝜑 ) → ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
91 |
90
|
3adant1 |
⊢ ( ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( 𝜑 → ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) ∧ 𝜑 ) → ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
92 |
|
elfzoel1 |
⊢ ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑀 ∈ ℤ ) |
93 |
|
elfzoelz |
⊢ ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑖 ∈ ℤ ) |
94 |
93
|
peano2zd |
⊢ ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝑖 + 1 ) ∈ ℤ ) |
95 |
92
|
zred |
⊢ ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑀 ∈ ℝ ) |
96 |
94
|
zred |
⊢ ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝑖 + 1 ) ∈ ℝ ) |
97 |
93
|
zred |
⊢ ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑖 ∈ ℝ ) |
98 |
|
elfzole1 |
⊢ ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑀 ≤ 𝑖 ) |
99 |
97
|
ltp1d |
⊢ ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑖 < ( 𝑖 + 1 ) ) |
100 |
95 97 96 98 99
|
lelttrd |
⊢ ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑀 < ( 𝑖 + 1 ) ) |
101 |
95 96 100
|
ltled |
⊢ ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑀 ≤ ( 𝑖 + 1 ) ) |
102 |
|
leid |
⊢ ( ( 𝑖 + 1 ) ∈ ℝ → ( 𝑖 + 1 ) ≤ ( 𝑖 + 1 ) ) |
103 |
96 102
|
syl |
⊢ ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝑖 + 1 ) ≤ ( 𝑖 + 1 ) ) |
104 |
92 94 94 101 103
|
elfzd |
⊢ ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝑖 + 1 ) ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ) |
105 |
104
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑖 + 1 ) ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ) |
106 |
|
fveq2 |
⊢ ( 𝑗 = ( 𝑖 + 1 ) → ( 𝐸 ‘ 𝑗 ) = ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) |
107 |
106
|
ssiun2s |
⊢ ( ( 𝑖 + 1 ) ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) → ( 𝐸 ‘ ( 𝑖 + 1 ) ) ⊆ ∪ 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ( 𝐸 ‘ 𝑗 ) ) |
108 |
105 107
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐸 ‘ ( 𝑖 + 1 ) ) ⊆ ∪ 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ( 𝐸 ‘ 𝑗 ) ) |
109 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝐸 ‘ 𝑖 ) = ( 𝐸 ‘ 𝑗 ) ) |
110 |
109
|
cbviunv |
⊢ ∪ 𝑖 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑖 ) = ∪ 𝑗 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑗 ) |
111 |
110
|
mpteq2i |
⊢ ( 𝑛 ∈ 𝑍 ↦ ∪ 𝑖 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) = ( 𝑛 ∈ 𝑍 ↦ ∪ 𝑗 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑗 ) ) |
112 |
6 111
|
eqtri |
⊢ 𝐺 = ( 𝑛 ∈ 𝑍 ↦ ∪ 𝑗 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑗 ) ) |
113 |
|
oveq2 |
⊢ ( 𝑛 = ( 𝑖 + 1 ) → ( 𝑀 ... 𝑛 ) = ( 𝑀 ... ( 𝑖 + 1 ) ) ) |
114 |
113
|
iuneq1d |
⊢ ( 𝑛 = ( 𝑖 + 1 ) → ∪ 𝑗 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑗 ) = ∪ 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ( 𝐸 ‘ 𝑗 ) ) |
115 |
36
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑀 ∈ ℤ ) |
116 |
93
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑖 ∈ ℤ ) |
117 |
116
|
peano2zd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑖 + 1 ) ∈ ℤ ) |
118 |
115
|
zred |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑀 ∈ ℝ ) |
119 |
117
|
zred |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑖 + 1 ) ∈ ℝ ) |
120 |
116
|
zred |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑖 ∈ ℝ ) |
121 |
98
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑀 ≤ 𝑖 ) |
122 |
120
|
ltp1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑖 < ( 𝑖 + 1 ) ) |
123 |
118 120 119 121 122
|
lelttrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑀 < ( 𝑖 + 1 ) ) |
124 |
118 119 123
|
ltled |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑀 ≤ ( 𝑖 + 1 ) ) |
125 |
115 117 124
|
3jca |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑀 ∈ ℤ ∧ ( 𝑖 + 1 ) ∈ ℤ ∧ 𝑀 ≤ ( 𝑖 + 1 ) ) ) |
126 |
|
eluz2 |
⊢ ( ( 𝑖 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ ( 𝑖 + 1 ) ∈ ℤ ∧ 𝑀 ≤ ( 𝑖 + 1 ) ) ) |
127 |
125 126
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑖 + 1 ) ∈ ( ℤ≥ ‘ 𝑀 ) ) |
128 |
3
|
eqcomi |
⊢ ( ℤ≥ ‘ 𝑀 ) = 𝑍 |
129 |
127 128
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑖 + 1 ) ∈ 𝑍 ) |
130 |
|
ovex |
⊢ ( 𝑀 ... ( 𝑖 + 1 ) ) ∈ V |
131 |
|
fvex |
⊢ ( 𝐸 ‘ 𝑗 ) ∈ V |
132 |
130 131
|
iunex |
⊢ ∪ 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ( 𝐸 ‘ 𝑗 ) ∈ V |
133 |
132
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∪ 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ( 𝐸 ‘ 𝑗 ) ∈ V ) |
134 |
112 114 129 133
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐺 ‘ ( 𝑖 + 1 ) ) = ∪ 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ( 𝐸 ‘ 𝑗 ) ) |
135 |
134
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∪ 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ( 𝐸 ‘ 𝑗 ) = ( 𝐺 ‘ ( 𝑖 + 1 ) ) ) |
136 |
108 135
|
sseqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐸 ‘ ( 𝑖 + 1 ) ) ⊆ ( 𝐺 ‘ ( 𝑖 + 1 ) ) ) |
137 |
|
sseqin2 |
⊢ ( ( 𝐸 ‘ ( 𝑖 + 1 ) ) ⊆ ( 𝐺 ‘ ( 𝑖 + 1 ) ) ↔ ( ( 𝐺 ‘ ( 𝑖 + 1 ) ) ∩ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) = ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) |
138 |
137
|
biimpi |
⊢ ( ( 𝐸 ‘ ( 𝑖 + 1 ) ) ⊆ ( 𝐺 ‘ ( 𝑖 + 1 ) ) → ( ( 𝐺 ‘ ( 𝑖 + 1 ) ) ∩ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) = ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) |
139 |
136 138
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝐺 ‘ ( 𝑖 + 1 ) ) ∩ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) = ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) |
140 |
139
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖 + 1 ) ) ∩ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) |
141 |
|
nfcv |
⊢ Ⅎ 𝑗 ( 𝐸 ‘ ( 𝑖 + 1 ) ) |
142 |
|
elfzouz |
⊢ ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
143 |
142
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑖 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
144 |
141 143 106
|
iunp1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∪ 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ( 𝐸 ‘ 𝑗 ) = ( ∪ 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 ) ∪ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) |
145 |
134 144
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐺 ‘ ( 𝑖 + 1 ) ) = ( ∪ 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 ) ∪ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) |
146 |
145
|
difeq1d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝐺 ‘ ( 𝑖 + 1 ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) = ( ( ∪ 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 ) ∪ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) |
147 |
|
fveq2 |
⊢ ( 𝑛 = 𝑗 → ( 𝐸 ‘ 𝑛 ) = ( 𝐸 ‘ 𝑗 ) ) |
148 |
147
|
cbvdisjv |
⊢ ( Disj 𝑛 ∈ 𝑍 ( 𝐸 ‘ 𝑛 ) ↔ Disj 𝑗 ∈ 𝑍 ( 𝐸 ‘ 𝑗 ) ) |
149 |
5 148
|
sylib |
⊢ ( 𝜑 → Disj 𝑗 ∈ 𝑍 ( 𝐸 ‘ 𝑗 ) ) |
150 |
149
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → Disj 𝑗 ∈ 𝑍 ( 𝐸 ‘ 𝑗 ) ) |
151 |
|
fzssuz |
⊢ ( 𝑀 ... 𝑖 ) ⊆ ( ℤ≥ ‘ 𝑀 ) |
152 |
151 128
|
sseqtri |
⊢ ( 𝑀 ... 𝑖 ) ⊆ 𝑍 |
153 |
152
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑀 ... 𝑖 ) ⊆ 𝑍 ) |
154 |
|
fzp1nel |
⊢ ¬ ( 𝑖 + 1 ) ∈ ( 𝑀 ... 𝑖 ) |
155 |
154
|
a1i |
⊢ ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) → ¬ ( 𝑖 + 1 ) ∈ ( 𝑀 ... 𝑖 ) ) |
156 |
155
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ¬ ( 𝑖 + 1 ) ∈ ( 𝑀 ... 𝑖 ) ) |
157 |
129 156
|
eldifd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑖 + 1 ) ∈ ( 𝑍 ∖ ( 𝑀 ... 𝑖 ) ) ) |
158 |
150 153 157 106
|
disjiun2 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ∪ 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 ) ∩ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) = ∅ ) |
159 |
|
undif4 |
⊢ ( ( ∪ 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 ) ∩ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) = ∅ → ( ∪ 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 ) ∪ ( ( 𝐸 ‘ ( 𝑖 + 1 ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( ∪ 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 ) ∪ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) |
160 |
158 159
|
syl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ∪ 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 ) ∪ ( ( 𝐸 ‘ ( 𝑖 + 1 ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( ∪ 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 ) ∪ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) |
161 |
160
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( ∪ 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 ) ∪ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) = ( ∪ 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 ) ∪ ( ( 𝐸 ‘ ( 𝑖 + 1 ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) ) |
162 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝜑 ) |
163 |
143 128
|
eleqtrdi |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑖 ∈ 𝑍 ) |
164 |
112
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → 𝐺 = ( 𝑛 ∈ 𝑍 ↦ ∪ 𝑗 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑗 ) ) ) |
165 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑛 = 𝑖 ) → 𝑛 = 𝑖 ) |
166 |
165
|
oveq2d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑛 = 𝑖 ) → ( 𝑀 ... 𝑛 ) = ( 𝑀 ... 𝑖 ) ) |
167 |
166
|
iuneq1d |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑛 = 𝑖 ) → ∪ 𝑗 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑗 ) = ∪ 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 ) ) |
168 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → 𝑖 ∈ 𝑍 ) |
169 |
|
ovex |
⊢ ( 𝑀 ... 𝑖 ) ∈ V |
170 |
169 131
|
iunex |
⊢ ∪ 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 ) ∈ V |
171 |
170
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ∪ 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 ) ∈ V ) |
172 |
164 167 168 171
|
fvmptd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑖 ) = ∪ 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 ) ) |
173 |
162 163 172
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐺 ‘ 𝑖 ) = ∪ 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 ) ) |
174 |
173
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∪ 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 ) = ( 𝐺 ‘ 𝑖 ) ) |
175 |
|
difid |
⊢ ( ( 𝐸 ‘ ( 𝑖 + 1 ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) = ∅ |
176 |
175
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝐸 ‘ ( 𝑖 + 1 ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) = ∅ ) |
177 |
174 176
|
uneq12d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ∪ 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 ) ∪ ( ( 𝐸 ‘ ( 𝑖 + 1 ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝐺 ‘ 𝑖 ) ∪ ∅ ) ) |
178 |
|
un0 |
⊢ ( ( 𝐺 ‘ 𝑖 ) ∪ ∅ ) = ( 𝐺 ‘ 𝑖 ) |
179 |
178
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝐺 ‘ 𝑖 ) ∪ ∅ ) = ( 𝐺 ‘ 𝑖 ) ) |
180 |
177 179
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ∪ 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 ) ∪ ( ( 𝐸 ‘ ( 𝑖 + 1 ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝐺 ‘ 𝑖 ) ) |
181 |
146 161 180
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝐺 ‘ ( 𝑖 + 1 ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) = ( 𝐺 ‘ 𝑖 ) ) |
182 |
181
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖 + 1 ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) ) |
183 |
140 182
|
oveq12d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖 + 1 ) ) ∩ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖 + 1 ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) ) = ( ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) ) ) |
184 |
183
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) → ( ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖 + 1 ) ) ∩ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖 + 1 ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) ) = ( ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) ) ) |
185 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑂 ∈ OutMeas ) |
186 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝐸 : 𝑍 ⟶ 𝑆 ) |
187 |
186 129
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐸 ‘ ( 𝑖 + 1 ) ) ∈ 𝑆 ) |
188 |
|
simpll |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ) → 𝜑 ) |
189 |
92
|
adantr |
⊢ ( ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ) → 𝑀 ∈ ℤ ) |
190 |
|
elfzelz |
⊢ ( 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) → 𝑗 ∈ ℤ ) |
191 |
190
|
adantl |
⊢ ( ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ) → 𝑗 ∈ ℤ ) |
192 |
|
elfzle1 |
⊢ ( 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) → 𝑀 ≤ 𝑗 ) |
193 |
192
|
adantl |
⊢ ( ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ) → 𝑀 ≤ 𝑗 ) |
194 |
189 191 193
|
3jca |
⊢ ( ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ) → ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑀 ≤ 𝑗 ) ) |
195 |
|
eluz2 |
⊢ ( 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑀 ≤ 𝑗 ) ) |
196 |
194 195
|
sylibr |
⊢ ( ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ) → 𝑗 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
197 |
196 128
|
eleqtrdi |
⊢ ( ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ) → 𝑗 ∈ 𝑍 ) |
198 |
197
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ) → 𝑗 ∈ 𝑍 ) |
199 |
1 43
|
syl |
⊢ ( 𝜑 → 𝑆 ⊆ dom 𝑂 ) |
200 |
199
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → 𝑆 ⊆ dom 𝑂 ) |
201 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑗 ) ∈ 𝑆 ) |
202 |
200 201
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑗 ) ∈ dom 𝑂 ) |
203 |
|
elssuni |
⊢ ( ( 𝐸 ‘ 𝑗 ) ∈ dom 𝑂 → ( 𝐸 ‘ 𝑗 ) ⊆ ∪ dom 𝑂 ) |
204 |
202 203
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑗 ) ⊆ ∪ dom 𝑂 ) |
205 |
188 198 204
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ) → ( 𝐸 ‘ 𝑗 ) ⊆ ∪ dom 𝑂 ) |
206 |
205
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∀ 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ( 𝐸 ‘ 𝑗 ) ⊆ ∪ dom 𝑂 ) |
207 |
|
iunss |
⊢ ( ∪ 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ( 𝐸 ‘ 𝑗 ) ⊆ ∪ dom 𝑂 ↔ ∀ 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ( 𝐸 ‘ 𝑗 ) ⊆ ∪ dom 𝑂 ) |
208 |
206 207
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∪ 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ( 𝐸 ‘ 𝑗 ) ⊆ ∪ dom 𝑂 ) |
209 |
134 208
|
eqsstrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐺 ‘ ( 𝑖 + 1 ) ) ⊆ ∪ dom 𝑂 ) |
210 |
185 2 42 187 209
|
caragensplit |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖 + 1 ) ) ∩ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖 + 1 ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) ) = ( 𝑂 ‘ ( 𝐺 ‘ ( 𝑖 + 1 ) ) ) ) |
211 |
210
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑂 ‘ ( 𝐺 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖 + 1 ) ) ∩ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖 + 1 ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
212 |
211
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) → ( 𝑂 ‘ ( 𝐺 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖 + 1 ) ) ∩ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖 + 1 ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) ) ) |
213 |
185
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ) → 𝑂 ∈ OutMeas ) |
214 |
162
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ) → 𝜑 ) |
215 |
|
elfzuz |
⊢ ( 𝑛 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) → 𝑛 ∈ ( ℤ≥ ‘ 𝑀 ) ) |
216 |
215 128
|
eleqtrdi |
⊢ ( 𝑛 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) → 𝑛 ∈ 𝑍 ) |
217 |
216
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ) → 𝑛 ∈ 𝑍 ) |
218 |
4 199
|
fssd |
⊢ ( 𝜑 → 𝐸 : 𝑍 ⟶ dom 𝑂 ) |
219 |
218
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑛 ) ∈ dom 𝑂 ) |
220 |
219 55
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝑍 ) → ( 𝐸 ‘ 𝑛 ) ⊆ ∪ dom 𝑂 ) |
221 |
214 217 220
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ) → ( 𝐸 ‘ 𝑛 ) ⊆ ∪ dom 𝑂 ) |
222 |
213 42 221
|
omecl |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ) → ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ∈ ( 0 [,] +∞ ) ) |
223 |
|
2fveq3 |
⊢ ( 𝑛 = ( 𝑖 + 1 ) → ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) = ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) |
224 |
143 222 223
|
sge0p1 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = ( ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) ) |
225 |
224
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) → ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = ( ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) ) |
226 |
|
id |
⊢ ( ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) → ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
227 |
226
|
eqcomd |
⊢ ( ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) → ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) ) |
228 |
227
|
oveq1d |
⊢ ( ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) → ( ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) +𝑒 ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) ) |
229 |
228
|
3ad2ant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) → ( ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) +𝑒 ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) ) |
230 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑖 ) ) → 𝜑 ) |
231 |
152
|
sseli |
⊢ ( 𝑗 ∈ ( 𝑀 ... 𝑖 ) → 𝑗 ∈ 𝑍 ) |
232 |
231
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑖 ) ) → 𝑗 ∈ 𝑍 ) |
233 |
230 232 204
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ( 𝑀 ... 𝑖 ) ) → ( 𝐸 ‘ 𝑗 ) ⊆ ∪ dom 𝑂 ) |
234 |
233
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) ∧ 𝑗 ∈ ( 𝑀 ... 𝑖 ) ) → ( 𝐸 ‘ 𝑗 ) ⊆ ∪ dom 𝑂 ) |
235 |
234
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ∀ 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 ) ⊆ ∪ dom 𝑂 ) |
236 |
|
iunss |
⊢ ( ∪ 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 ) ⊆ ∪ dom 𝑂 ↔ ∀ 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 ) ⊆ ∪ dom 𝑂 ) |
237 |
235 236
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ∪ 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 ) ⊆ ∪ dom 𝑂 ) |
238 |
172 237
|
eqsstrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑍 ) → ( 𝐺 ‘ 𝑖 ) ⊆ ∪ dom 𝑂 ) |
239 |
162 163 238
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐺 ‘ 𝑖 ) ⊆ ∪ dom 𝑂 ) |
240 |
185 42 239
|
omexrcl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) ∈ ℝ* ) |
241 |
108 208
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐸 ‘ ( 𝑖 + 1 ) ) ⊆ ∪ dom 𝑂 ) |
242 |
185 42 241
|
omexrcl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ∈ ℝ* ) |
243 |
240 242
|
xaddcomd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) +𝑒 ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) ) ) |
244 |
243
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) → ( ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) +𝑒 ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) ) ) |
245 |
225 229 244
|
3eqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) → ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) = ( ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) ) ) |
246 |
184 212 245
|
3eqtr4d |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) → ( 𝑂 ‘ ( 𝐺 ‘ ( 𝑖 + 1 ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
247 |
87 88 91 246
|
syl3anc |
⊢ ( ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( 𝜑 → ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) ∧ 𝜑 ) → ( 𝑂 ‘ ( 𝐺 ‘ ( 𝑖 + 1 ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |
248 |
247
|
3exp |
⊢ ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) → ( ( 𝜑 → ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) → ( 𝜑 → ( 𝑂 ‘ ( 𝐺 ‘ ( 𝑖 + 1 ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) ) ) |
249 |
16 22 28 34 86 248
|
fzind2 |
⊢ ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( 𝜑 → ( 𝑂 ‘ ( 𝐺 ‘ 𝑁 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) ) |
250 |
9 10 249
|
sylc |
⊢ ( 𝜑 → ( 𝑂 ‘ ( 𝐺 ‘ 𝑁 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |