| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caratheodorylem1.o | ⊢ ( 𝜑  →  𝑂  ∈  OutMeas ) | 
						
							| 2 |  | caratheodorylem1.s | ⊢ 𝑆  =  ( CaraGen ‘ 𝑂 ) | 
						
							| 3 |  | caratheodorylem1.z | ⊢ 𝑍  =  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 4 |  | caratheodorylem1.e | ⊢ ( 𝜑  →  𝐸 : 𝑍 ⟶ 𝑆 ) | 
						
							| 5 |  | caratheodorylem1.dj | ⊢ ( 𝜑  →  Disj  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 ) ) | 
						
							| 6 |  | caratheodorylem1.g | ⊢ 𝐺  =  ( 𝑛  ∈  𝑍  ↦  ∪  𝑖  ∈  ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑖 ) ) | 
						
							| 7 |  | caratheodorylem1.n | ⊢ ( 𝜑  →  𝑁  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 8 |  | eluzfz2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑁  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝜑  →  𝑁  ∈  ( 𝑀 ... 𝑁 ) ) | 
						
							| 10 |  | id | ⊢ ( 𝜑  →  𝜑 ) | 
						
							| 11 |  | 2fveq3 | ⊢ ( 𝑗  =  𝑀  →  ( 𝑂 ‘ ( 𝐺 ‘ 𝑗 ) )  =  ( 𝑂 ‘ ( 𝐺 ‘ 𝑀 ) ) ) | 
						
							| 12 |  | oveq2 | ⊢ ( 𝑗  =  𝑀  →  ( 𝑀 ... 𝑗 )  =  ( 𝑀 ... 𝑀 ) ) | 
						
							| 13 | 12 | mpteq1d | ⊢ ( 𝑗  =  𝑀  →  ( 𝑛  ∈  ( 𝑀 ... 𝑗 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  ( 𝑀 ... 𝑀 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) | 
						
							| 14 | 13 | fveq2d | ⊢ ( 𝑗  =  𝑀  →  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑗 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑀 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) | 
						
							| 15 | 11 14 | eqeq12d | ⊢ ( 𝑗  =  𝑀  →  ( ( 𝑂 ‘ ( 𝐺 ‘ 𝑗 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑗 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) )  ↔  ( 𝑂 ‘ ( 𝐺 ‘ 𝑀 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑀 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 16 | 15 | imbi2d | ⊢ ( 𝑗  =  𝑀  →  ( ( 𝜑  →  ( 𝑂 ‘ ( 𝐺 ‘ 𝑗 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑗 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) )  ↔  ( 𝜑  →  ( 𝑂 ‘ ( 𝐺 ‘ 𝑀 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑀 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 17 |  | 2fveq3 | ⊢ ( 𝑗  =  𝑖  →  ( 𝑂 ‘ ( 𝐺 ‘ 𝑗 ) )  =  ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) ) | 
						
							| 18 |  | oveq2 | ⊢ ( 𝑗  =  𝑖  →  ( 𝑀 ... 𝑗 )  =  ( 𝑀 ... 𝑖 ) ) | 
						
							| 19 | 18 | mpteq1d | ⊢ ( 𝑗  =  𝑖  →  ( 𝑛  ∈  ( 𝑀 ... 𝑗 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  ( 𝑀 ... 𝑖 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) | 
						
							| 20 | 19 | fveq2d | ⊢ ( 𝑗  =  𝑖  →  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑗 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑖 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) | 
						
							| 21 | 17 20 | eqeq12d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝑂 ‘ ( 𝐺 ‘ 𝑗 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑗 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) )  ↔  ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑖 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 22 | 21 | imbi2d | ⊢ ( 𝑗  =  𝑖  →  ( ( 𝜑  →  ( 𝑂 ‘ ( 𝐺 ‘ 𝑗 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑗 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) )  ↔  ( 𝜑  →  ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑖 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 23 |  | 2fveq3 | ⊢ ( 𝑗  =  ( 𝑖  +  1 )  →  ( 𝑂 ‘ ( 𝐺 ‘ 𝑗 ) )  =  ( 𝑂 ‘ ( 𝐺 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 24 |  | oveq2 | ⊢ ( 𝑗  =  ( 𝑖  +  1 )  →  ( 𝑀 ... 𝑗 )  =  ( 𝑀 ... ( 𝑖  +  1 ) ) ) | 
						
							| 25 | 24 | mpteq1d | ⊢ ( 𝑗  =  ( 𝑖  +  1 )  →  ( 𝑛  ∈  ( 𝑀 ... 𝑗 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  ( 𝑀 ... ( 𝑖  +  1 ) )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) | 
						
							| 26 | 25 | fveq2d | ⊢ ( 𝑗  =  ( 𝑖  +  1 )  →  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑗 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... ( 𝑖  +  1 ) )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) | 
						
							| 27 | 23 26 | eqeq12d | ⊢ ( 𝑗  =  ( 𝑖  +  1 )  →  ( ( 𝑂 ‘ ( 𝐺 ‘ 𝑗 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑗 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) )  ↔  ( 𝑂 ‘ ( 𝐺 ‘ ( 𝑖  +  1 ) ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... ( 𝑖  +  1 ) )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 28 | 27 | imbi2d | ⊢ ( 𝑗  =  ( 𝑖  +  1 )  →  ( ( 𝜑  →  ( 𝑂 ‘ ( 𝐺 ‘ 𝑗 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑗 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) )  ↔  ( 𝜑  →  ( 𝑂 ‘ ( 𝐺 ‘ ( 𝑖  +  1 ) ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... ( 𝑖  +  1 ) )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 29 |  | 2fveq3 | ⊢ ( 𝑗  =  𝑁  →  ( 𝑂 ‘ ( 𝐺 ‘ 𝑗 ) )  =  ( 𝑂 ‘ ( 𝐺 ‘ 𝑁 ) ) ) | 
						
							| 30 |  | oveq2 | ⊢ ( 𝑗  =  𝑁  →  ( 𝑀 ... 𝑗 )  =  ( 𝑀 ... 𝑁 ) ) | 
						
							| 31 | 30 | mpteq1d | ⊢ ( 𝑗  =  𝑁  →  ( 𝑛  ∈  ( 𝑀 ... 𝑗 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  ( 𝑀 ... 𝑁 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) | 
						
							| 32 | 31 | fveq2d | ⊢ ( 𝑗  =  𝑁  →  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑗 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑁 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) | 
						
							| 33 | 29 32 | eqeq12d | ⊢ ( 𝑗  =  𝑁  →  ( ( 𝑂 ‘ ( 𝐺 ‘ 𝑗 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑗 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) )  ↔  ( 𝑂 ‘ ( 𝐺 ‘ 𝑁 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑁 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 34 | 33 | imbi2d | ⊢ ( 𝑗  =  𝑁  →  ( ( 𝜑  →  ( 𝑂 ‘ ( 𝐺 ‘ 𝑗 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑗 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) )  ↔  ( 𝜑  →  ( 𝑂 ‘ ( 𝐺 ‘ 𝑁 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑁 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 35 |  | eluzel2 | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  𝑀  ∈  ℤ ) | 
						
							| 36 | 7 35 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ℤ ) | 
						
							| 37 |  | fzsn | ⊢ ( 𝑀  ∈  ℤ  →  ( 𝑀 ... 𝑀 )  =  { 𝑀 } ) | 
						
							| 38 | 36 37 | syl | ⊢ ( 𝜑  →  ( 𝑀 ... 𝑀 )  =  { 𝑀 } ) | 
						
							| 39 | 38 | mpteq1d | ⊢ ( 𝜑  →  ( 𝑛  ∈  ( 𝑀 ... 𝑀 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  { 𝑀 }  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) | 
						
							| 40 | 39 | fveq2d | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑀 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) )  =  ( Σ^ ‘ ( 𝑛  ∈  { 𝑀 }  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) | 
						
							| 41 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  { 𝑀 } )  →  𝑂  ∈  OutMeas ) | 
						
							| 42 |  | eqid | ⊢ ∪  dom  𝑂  =  ∪  dom  𝑂 | 
						
							| 43 | 2 | caragenss | ⊢ ( 𝑂  ∈  OutMeas  →  𝑆  ⊆  dom  𝑂 ) | 
						
							| 44 | 41 43 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  { 𝑀 } )  →  𝑆  ⊆  dom  𝑂 ) | 
						
							| 45 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  { 𝑀 } )  →  𝐸 : 𝑍 ⟶ 𝑆 ) | 
						
							| 46 |  | elsni | ⊢ ( 𝑛  ∈  { 𝑀 }  →  𝑛  =  𝑀 ) | 
						
							| 47 | 46 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  { 𝑀 } )  →  𝑛  =  𝑀 ) | 
						
							| 48 |  | uzid | ⊢ ( 𝑀  ∈  ℤ  →  𝑀  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 49 | 36 48 | syl | ⊢ ( 𝜑  →  𝑀  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 50 | 49 3 | eleqtrrdi | ⊢ ( 𝜑  →  𝑀  ∈  𝑍 ) | 
						
							| 51 | 50 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  ∈  { 𝑀 } )  →  𝑀  ∈  𝑍 ) | 
						
							| 52 | 47 51 | eqeltrd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  { 𝑀 } )  →  𝑛  ∈  𝑍 ) | 
						
							| 53 | 45 52 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  { 𝑀 } )  →  ( 𝐸 ‘ 𝑛 )  ∈  𝑆 ) | 
						
							| 54 | 44 53 | sseldd | ⊢ ( ( 𝜑  ∧  𝑛  ∈  { 𝑀 } )  →  ( 𝐸 ‘ 𝑛 )  ∈  dom  𝑂 ) | 
						
							| 55 |  | elssuni | ⊢ ( ( 𝐸 ‘ 𝑛 )  ∈  dom  𝑂  →  ( 𝐸 ‘ 𝑛 )  ⊆  ∪  dom  𝑂 ) | 
						
							| 56 | 54 55 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  { 𝑀 } )  →  ( 𝐸 ‘ 𝑛 )  ⊆  ∪  dom  𝑂 ) | 
						
							| 57 | 41 42 56 | omecl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  { 𝑀 } )  →  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 58 |  | eqid | ⊢ ( 𝑛  ∈  { 𝑀 }  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  { 𝑀 }  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) | 
						
							| 59 | 57 58 | fmptd | ⊢ ( 𝜑  →  ( 𝑛  ∈  { 𝑀 }  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) : { 𝑀 } ⟶ ( 0 [,] +∞ ) ) | 
						
							| 60 | 36 59 | sge0sn | ⊢ ( 𝜑  →  ( Σ^ ‘ ( 𝑛  ∈  { 𝑀 }  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) )  =  ( ( 𝑛  ∈  { 𝑀 }  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ‘ 𝑀 ) ) | 
						
							| 61 |  | eqidd | ⊢ ( 𝜑  →  ( 𝑛  ∈  { 𝑀 }  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) )  =  ( 𝑛  ∈  { 𝑀 }  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) | 
						
							| 62 | 38 | iuneq1d | ⊢ ( 𝜑  →  ∪  𝑖  ∈  ( 𝑀 ... 𝑀 ) ( 𝐸 ‘ 𝑖 )  =  ∪  𝑖  ∈  { 𝑀 } ( 𝐸 ‘ 𝑖 ) ) | 
						
							| 63 |  | fveq2 | ⊢ ( 𝑖  =  𝑀  →  ( 𝐸 ‘ 𝑖 )  =  ( 𝐸 ‘ 𝑀 ) ) | 
						
							| 64 | 63 | iunxsng | ⊢ ( 𝑀  ∈  𝑍  →  ∪  𝑖  ∈  { 𝑀 } ( 𝐸 ‘ 𝑖 )  =  ( 𝐸 ‘ 𝑀 ) ) | 
						
							| 65 | 50 64 | syl | ⊢ ( 𝜑  →  ∪  𝑖  ∈  { 𝑀 } ( 𝐸 ‘ 𝑖 )  =  ( 𝐸 ‘ 𝑀 ) ) | 
						
							| 66 |  | eqidd | ⊢ ( 𝜑  →  ( 𝐸 ‘ 𝑀 )  =  ( 𝐸 ‘ 𝑀 ) ) | 
						
							| 67 | 62 65 66 | 3eqtrrd | ⊢ ( 𝜑  →  ( 𝐸 ‘ 𝑀 )  =  ∪  𝑖  ∈  ( 𝑀 ... 𝑀 ) ( 𝐸 ‘ 𝑖 ) ) | 
						
							| 68 | 67 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  =  𝑀 )  →  ( 𝐸 ‘ 𝑀 )  =  ∪  𝑖  ∈  ( 𝑀 ... 𝑀 ) ( 𝐸 ‘ 𝑖 ) ) | 
						
							| 69 |  | fveq2 | ⊢ ( 𝑛  =  𝑀  →  ( 𝐸 ‘ 𝑛 )  =  ( 𝐸 ‘ 𝑀 ) ) | 
						
							| 70 | 69 | adantl | ⊢ ( ( 𝜑  ∧  𝑛  =  𝑀 )  →  ( 𝐸 ‘ 𝑛 )  =  ( 𝐸 ‘ 𝑀 ) ) | 
						
							| 71 |  | oveq2 | ⊢ ( 𝑛  =  𝑀  →  ( 𝑀 ... 𝑛 )  =  ( 𝑀 ... 𝑀 ) ) | 
						
							| 72 | 71 | iuneq1d | ⊢ ( 𝑛  =  𝑀  →  ∪  𝑖  ∈  ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑖 )  =  ∪  𝑖  ∈  ( 𝑀 ... 𝑀 ) ( 𝐸 ‘ 𝑖 ) ) | 
						
							| 73 |  | ovex | ⊢ ( 𝑀 ... 𝑀 )  ∈  V | 
						
							| 74 |  | fvex | ⊢ ( 𝐸 ‘ 𝑖 )  ∈  V | 
						
							| 75 | 73 74 | iunex | ⊢ ∪  𝑖  ∈  ( 𝑀 ... 𝑀 ) ( 𝐸 ‘ 𝑖 )  ∈  V | 
						
							| 76 | 75 | a1i | ⊢ ( 𝜑  →  ∪  𝑖  ∈  ( 𝑀 ... 𝑀 ) ( 𝐸 ‘ 𝑖 )  ∈  V ) | 
						
							| 77 | 6 72 50 76 | fvmptd3 | ⊢ ( 𝜑  →  ( 𝐺 ‘ 𝑀 )  =  ∪  𝑖  ∈  ( 𝑀 ... 𝑀 ) ( 𝐸 ‘ 𝑖 ) ) | 
						
							| 78 | 77 | adantr | ⊢ ( ( 𝜑  ∧  𝑛  =  𝑀 )  →  ( 𝐺 ‘ 𝑀 )  =  ∪  𝑖  ∈  ( 𝑀 ... 𝑀 ) ( 𝐸 ‘ 𝑖 ) ) | 
						
							| 79 | 68 70 78 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑛  =  𝑀 )  →  ( 𝐸 ‘ 𝑛 )  =  ( 𝐺 ‘ 𝑀 ) ) | 
						
							| 80 | 79 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑛  =  𝑀 )  →  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) )  =  ( 𝑂 ‘ ( 𝐺 ‘ 𝑀 ) ) ) | 
						
							| 81 |  | snidg | ⊢ ( 𝑀  ∈  𝑍  →  𝑀  ∈  { 𝑀 } ) | 
						
							| 82 | 50 81 | syl | ⊢ ( 𝜑  →  𝑀  ∈  { 𝑀 } ) | 
						
							| 83 |  | fvexd | ⊢ ( 𝜑  →  ( 𝑂 ‘ ( 𝐺 ‘ 𝑀 ) )  ∈  V ) | 
						
							| 84 | 61 80 82 83 | fvmptd | ⊢ ( 𝜑  →  ( ( 𝑛  ∈  { 𝑀 }  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ‘ 𝑀 )  =  ( 𝑂 ‘ ( 𝐺 ‘ 𝑀 ) ) ) | 
						
							| 85 | 40 60 84 | 3eqtrrd | ⊢ ( 𝜑  →  ( 𝑂 ‘ ( 𝐺 ‘ 𝑀 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑀 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) | 
						
							| 86 | 85 | a1i | ⊢ ( 𝑁  ∈  ( ℤ≥ ‘ 𝑀 )  →  ( 𝜑  →  ( 𝑂 ‘ ( 𝐺 ‘ 𝑀 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑀 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 87 |  | simp3 | ⊢ ( ( 𝑖  ∈  ( 𝑀 ..^ 𝑁 )  ∧  ( 𝜑  →  ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑖 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) )  ∧  𝜑 )  →  𝜑 ) | 
						
							| 88 |  | simp1 | ⊢ ( ( 𝑖  ∈  ( 𝑀 ..^ 𝑁 )  ∧  ( 𝜑  →  ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑖 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) )  ∧  𝜑 )  →  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) ) | 
						
							| 89 |  | id | ⊢ ( ( 𝜑  →  ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑖 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) )  →  ( 𝜑  →  ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑖 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 90 | 89 | imp | ⊢ ( ( ( 𝜑  →  ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑖 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) )  ∧  𝜑 )  →  ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑖 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) | 
						
							| 91 | 90 | 3adant1 | ⊢ ( ( 𝑖  ∈  ( 𝑀 ..^ 𝑁 )  ∧  ( 𝜑  →  ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑖 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) )  ∧  𝜑 )  →  ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑖 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) | 
						
							| 92 |  | elfzoel1 | ⊢ ( 𝑖  ∈  ( 𝑀 ..^ 𝑁 )  →  𝑀  ∈  ℤ ) | 
						
							| 93 |  | elfzoelz | ⊢ ( 𝑖  ∈  ( 𝑀 ..^ 𝑁 )  →  𝑖  ∈  ℤ ) | 
						
							| 94 | 93 | peano2zd | ⊢ ( 𝑖  ∈  ( 𝑀 ..^ 𝑁 )  →  ( 𝑖  +  1 )  ∈  ℤ ) | 
						
							| 95 | 92 | zred | ⊢ ( 𝑖  ∈  ( 𝑀 ..^ 𝑁 )  →  𝑀  ∈  ℝ ) | 
						
							| 96 | 94 | zred | ⊢ ( 𝑖  ∈  ( 𝑀 ..^ 𝑁 )  →  ( 𝑖  +  1 )  ∈  ℝ ) | 
						
							| 97 | 93 | zred | ⊢ ( 𝑖  ∈  ( 𝑀 ..^ 𝑁 )  →  𝑖  ∈  ℝ ) | 
						
							| 98 |  | elfzole1 | ⊢ ( 𝑖  ∈  ( 𝑀 ..^ 𝑁 )  →  𝑀  ≤  𝑖 ) | 
						
							| 99 | 97 | ltp1d | ⊢ ( 𝑖  ∈  ( 𝑀 ..^ 𝑁 )  →  𝑖  <  ( 𝑖  +  1 ) ) | 
						
							| 100 | 95 97 96 98 99 | lelttrd | ⊢ ( 𝑖  ∈  ( 𝑀 ..^ 𝑁 )  →  𝑀  <  ( 𝑖  +  1 ) ) | 
						
							| 101 | 95 96 100 | ltled | ⊢ ( 𝑖  ∈  ( 𝑀 ..^ 𝑁 )  →  𝑀  ≤  ( 𝑖  +  1 ) ) | 
						
							| 102 |  | leid | ⊢ ( ( 𝑖  +  1 )  ∈  ℝ  →  ( 𝑖  +  1 )  ≤  ( 𝑖  +  1 ) ) | 
						
							| 103 | 96 102 | syl | ⊢ ( 𝑖  ∈  ( 𝑀 ..^ 𝑁 )  →  ( 𝑖  +  1 )  ≤  ( 𝑖  +  1 ) ) | 
						
							| 104 | 92 94 94 101 103 | elfzd | ⊢ ( 𝑖  ∈  ( 𝑀 ..^ 𝑁 )  →  ( 𝑖  +  1 )  ∈  ( 𝑀 ... ( 𝑖  +  1 ) ) ) | 
						
							| 105 | 104 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑖  +  1 )  ∈  ( 𝑀 ... ( 𝑖  +  1 ) ) ) | 
						
							| 106 |  | fveq2 | ⊢ ( 𝑗  =  ( 𝑖  +  1 )  →  ( 𝐸 ‘ 𝑗 )  =  ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 107 | 106 | ssiun2s | ⊢ ( ( 𝑖  +  1 )  ∈  ( 𝑀 ... ( 𝑖  +  1 ) )  →  ( 𝐸 ‘ ( 𝑖  +  1 ) )  ⊆  ∪  𝑗  ∈  ( 𝑀 ... ( 𝑖  +  1 ) ) ( 𝐸 ‘ 𝑗 ) ) | 
						
							| 108 | 105 107 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝐸 ‘ ( 𝑖  +  1 ) )  ⊆  ∪  𝑗  ∈  ( 𝑀 ... ( 𝑖  +  1 ) ) ( 𝐸 ‘ 𝑗 ) ) | 
						
							| 109 |  | fveq2 | ⊢ ( 𝑖  =  𝑗  →  ( 𝐸 ‘ 𝑖 )  =  ( 𝐸 ‘ 𝑗 ) ) | 
						
							| 110 | 109 | cbviunv | ⊢ ∪  𝑖  ∈  ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑖 )  =  ∪  𝑗  ∈  ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑗 ) | 
						
							| 111 | 110 | mpteq2i | ⊢ ( 𝑛  ∈  𝑍  ↦  ∪  𝑖  ∈  ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑖 ) )  =  ( 𝑛  ∈  𝑍  ↦  ∪  𝑗  ∈  ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑗 ) ) | 
						
							| 112 | 6 111 | eqtri | ⊢ 𝐺  =  ( 𝑛  ∈  𝑍  ↦  ∪  𝑗  ∈  ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑗 ) ) | 
						
							| 113 |  | oveq2 | ⊢ ( 𝑛  =  ( 𝑖  +  1 )  →  ( 𝑀 ... 𝑛 )  =  ( 𝑀 ... ( 𝑖  +  1 ) ) ) | 
						
							| 114 | 113 | iuneq1d | ⊢ ( 𝑛  =  ( 𝑖  +  1 )  →  ∪  𝑗  ∈  ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑗 )  =  ∪  𝑗  ∈  ( 𝑀 ... ( 𝑖  +  1 ) ) ( 𝐸 ‘ 𝑗 ) ) | 
						
							| 115 | 36 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑀  ∈  ℤ ) | 
						
							| 116 | 93 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑖  ∈  ℤ ) | 
						
							| 117 | 116 | peano2zd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑖  +  1 )  ∈  ℤ ) | 
						
							| 118 | 115 | zred | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑀  ∈  ℝ ) | 
						
							| 119 | 117 | zred | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑖  +  1 )  ∈  ℝ ) | 
						
							| 120 | 116 | zred | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑖  ∈  ℝ ) | 
						
							| 121 | 98 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑀  ≤  𝑖 ) | 
						
							| 122 | 120 | ltp1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑖  <  ( 𝑖  +  1 ) ) | 
						
							| 123 | 118 120 119 121 122 | lelttrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑀  <  ( 𝑖  +  1 ) ) | 
						
							| 124 | 118 119 123 | ltled | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑀  ≤  ( 𝑖  +  1 ) ) | 
						
							| 125 | 115 117 124 | 3jca | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑀  ∈  ℤ  ∧  ( 𝑖  +  1 )  ∈  ℤ  ∧  𝑀  ≤  ( 𝑖  +  1 ) ) ) | 
						
							| 126 |  | eluz2 | ⊢ ( ( 𝑖  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 )  ↔  ( 𝑀  ∈  ℤ  ∧  ( 𝑖  +  1 )  ∈  ℤ  ∧  𝑀  ≤  ( 𝑖  +  1 ) ) ) | 
						
							| 127 | 125 126 | sylibr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑖  +  1 )  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 128 | 3 | eqcomi | ⊢ ( ℤ≥ ‘ 𝑀 )  =  𝑍 | 
						
							| 129 | 127 128 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑖  +  1 )  ∈  𝑍 ) | 
						
							| 130 |  | ovex | ⊢ ( 𝑀 ... ( 𝑖  +  1 ) )  ∈  V | 
						
							| 131 |  | fvex | ⊢ ( 𝐸 ‘ 𝑗 )  ∈  V | 
						
							| 132 | 130 131 | iunex | ⊢ ∪  𝑗  ∈  ( 𝑀 ... ( 𝑖  +  1 ) ) ( 𝐸 ‘ 𝑗 )  ∈  V | 
						
							| 133 | 132 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ∪  𝑗  ∈  ( 𝑀 ... ( 𝑖  +  1 ) ) ( 𝐸 ‘ 𝑗 )  ∈  V ) | 
						
							| 134 | 112 114 129 133 | fvmptd3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝐺 ‘ ( 𝑖  +  1 ) )  =  ∪  𝑗  ∈  ( 𝑀 ... ( 𝑖  +  1 ) ) ( 𝐸 ‘ 𝑗 ) ) | 
						
							| 135 | 134 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ∪  𝑗  ∈  ( 𝑀 ... ( 𝑖  +  1 ) ) ( 𝐸 ‘ 𝑗 )  =  ( 𝐺 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 136 | 108 135 | sseqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝐸 ‘ ( 𝑖  +  1 ) )  ⊆  ( 𝐺 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 137 |  | sseqin2 | ⊢ ( ( 𝐸 ‘ ( 𝑖  +  1 ) )  ⊆  ( 𝐺 ‘ ( 𝑖  +  1 ) )  ↔  ( ( 𝐺 ‘ ( 𝑖  +  1 ) )  ∩  ( 𝐸 ‘ ( 𝑖  +  1 ) ) )  =  ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 138 | 137 | biimpi | ⊢ ( ( 𝐸 ‘ ( 𝑖  +  1 ) )  ⊆  ( 𝐺 ‘ ( 𝑖  +  1 ) )  →  ( ( 𝐺 ‘ ( 𝑖  +  1 ) )  ∩  ( 𝐸 ‘ ( 𝑖  +  1 ) ) )  =  ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 139 | 136 138 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( 𝐺 ‘ ( 𝑖  +  1 ) )  ∩  ( 𝐸 ‘ ( 𝑖  +  1 ) ) )  =  ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) | 
						
							| 140 | 139 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖  +  1 ) )  ∩  ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) )  =  ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 141 |  | nfcv | ⊢ Ⅎ 𝑗 ( 𝐸 ‘ ( 𝑖  +  1 ) ) | 
						
							| 142 |  | elfzouz | ⊢ ( 𝑖  ∈  ( 𝑀 ..^ 𝑁 )  →  𝑖  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 143 | 142 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑖  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 144 | 141 143 106 | iunp1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ∪  𝑗  ∈  ( 𝑀 ... ( 𝑖  +  1 ) ) ( 𝐸 ‘ 𝑗 )  =  ( ∪  𝑗  ∈  ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 )  ∪  ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 145 | 134 144 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝐺 ‘ ( 𝑖  +  1 ) )  =  ( ∪  𝑗  ∈  ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 )  ∪  ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 146 | 145 | difeq1d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( 𝐺 ‘ ( 𝑖  +  1 ) )  ∖  ( 𝐸 ‘ ( 𝑖  +  1 ) ) )  =  ( ( ∪  𝑗  ∈  ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 )  ∪  ( 𝐸 ‘ ( 𝑖  +  1 ) ) )  ∖  ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 147 |  | fveq2 | ⊢ ( 𝑛  =  𝑗  →  ( 𝐸 ‘ 𝑛 )  =  ( 𝐸 ‘ 𝑗 ) ) | 
						
							| 148 | 147 | cbvdisjv | ⊢ ( Disj  𝑛  ∈  𝑍 ( 𝐸 ‘ 𝑛 )  ↔  Disj  𝑗  ∈  𝑍 ( 𝐸 ‘ 𝑗 ) ) | 
						
							| 149 | 5 148 | sylib | ⊢ ( 𝜑  →  Disj  𝑗  ∈  𝑍 ( 𝐸 ‘ 𝑗 ) ) | 
						
							| 150 | 149 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  Disj  𝑗  ∈  𝑍 ( 𝐸 ‘ 𝑗 ) ) | 
						
							| 151 |  | fzssuz | ⊢ ( 𝑀 ... 𝑖 )  ⊆  ( ℤ≥ ‘ 𝑀 ) | 
						
							| 152 | 151 128 | sseqtri | ⊢ ( 𝑀 ... 𝑖 )  ⊆  𝑍 | 
						
							| 153 | 152 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑀 ... 𝑖 )  ⊆  𝑍 ) | 
						
							| 154 |  | fzp1nel | ⊢ ¬  ( 𝑖  +  1 )  ∈  ( 𝑀 ... 𝑖 ) | 
						
							| 155 | 154 | a1i | ⊢ ( 𝑖  ∈  ( 𝑀 ..^ 𝑁 )  →  ¬  ( 𝑖  +  1 )  ∈  ( 𝑀 ... 𝑖 ) ) | 
						
							| 156 | 155 | adantl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ¬  ( 𝑖  +  1 )  ∈  ( 𝑀 ... 𝑖 ) ) | 
						
							| 157 | 129 156 | eldifd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑖  +  1 )  ∈  ( 𝑍  ∖  ( 𝑀 ... 𝑖 ) ) ) | 
						
							| 158 | 150 153 157 106 | disjiun2 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ∪  𝑗  ∈  ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 )  ∩  ( 𝐸 ‘ ( 𝑖  +  1 ) ) )  =  ∅ ) | 
						
							| 159 |  | undif4 | ⊢ ( ( ∪  𝑗  ∈  ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 )  ∩  ( 𝐸 ‘ ( 𝑖  +  1 ) ) )  =  ∅  →  ( ∪  𝑗  ∈  ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 )  ∪  ( ( 𝐸 ‘ ( 𝑖  +  1 ) )  ∖  ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( ∪  𝑗  ∈  ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 )  ∪  ( 𝐸 ‘ ( 𝑖  +  1 ) ) )  ∖  ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 160 | 158 159 | syl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ∪  𝑗  ∈  ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 )  ∪  ( ( 𝐸 ‘ ( 𝑖  +  1 ) )  ∖  ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( ∪  𝑗  ∈  ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 )  ∪  ( 𝐸 ‘ ( 𝑖  +  1 ) ) )  ∖  ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 161 | 160 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( ∪  𝑗  ∈  ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 )  ∪  ( 𝐸 ‘ ( 𝑖  +  1 ) ) )  ∖  ( 𝐸 ‘ ( 𝑖  +  1 ) ) )  =  ( ∪  𝑗  ∈  ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 )  ∪  ( ( 𝐸 ‘ ( 𝑖  +  1 ) )  ∖  ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 162 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝜑 ) | 
						
							| 163 | 143 128 | eleqtrdi | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑖  ∈  𝑍 ) | 
						
							| 164 | 112 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  →  𝐺  =  ( 𝑛  ∈  𝑍  ↦  ∪  𝑗  ∈  ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑗 ) ) ) | 
						
							| 165 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  ∧  𝑛  =  𝑖 )  →  𝑛  =  𝑖 ) | 
						
							| 166 | 165 | oveq2d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  ∧  𝑛  =  𝑖 )  →  ( 𝑀 ... 𝑛 )  =  ( 𝑀 ... 𝑖 ) ) | 
						
							| 167 | 166 | iuneq1d | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  ∧  𝑛  =  𝑖 )  →  ∪  𝑗  ∈  ( 𝑀 ... 𝑛 ) ( 𝐸 ‘ 𝑗 )  =  ∪  𝑗  ∈  ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 ) ) | 
						
							| 168 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  →  𝑖  ∈  𝑍 ) | 
						
							| 169 |  | ovex | ⊢ ( 𝑀 ... 𝑖 )  ∈  V | 
						
							| 170 | 169 131 | iunex | ⊢ ∪  𝑗  ∈  ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 )  ∈  V | 
						
							| 171 | 170 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  →  ∪  𝑗  ∈  ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 )  ∈  V ) | 
						
							| 172 | 164 167 168 171 | fvmptd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  →  ( 𝐺 ‘ 𝑖 )  =  ∪  𝑗  ∈  ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 ) ) | 
						
							| 173 | 162 163 172 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝐺 ‘ 𝑖 )  =  ∪  𝑗  ∈  ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 ) ) | 
						
							| 174 | 173 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ∪  𝑗  ∈  ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 )  =  ( 𝐺 ‘ 𝑖 ) ) | 
						
							| 175 |  | difid | ⊢ ( ( 𝐸 ‘ ( 𝑖  +  1 ) )  ∖  ( 𝐸 ‘ ( 𝑖  +  1 ) ) )  =  ∅ | 
						
							| 176 | 175 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( 𝐸 ‘ ( 𝑖  +  1 ) )  ∖  ( 𝐸 ‘ ( 𝑖  +  1 ) ) )  =  ∅ ) | 
						
							| 177 | 174 176 | uneq12d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ∪  𝑗  ∈  ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 )  ∪  ( ( 𝐸 ‘ ( 𝑖  +  1 ) )  ∖  ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( 𝐺 ‘ 𝑖 )  ∪  ∅ ) ) | 
						
							| 178 |  | un0 | ⊢ ( ( 𝐺 ‘ 𝑖 )  ∪  ∅ )  =  ( 𝐺 ‘ 𝑖 ) | 
						
							| 179 | 178 | a1i | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( 𝐺 ‘ 𝑖 )  ∪  ∅ )  =  ( 𝐺 ‘ 𝑖 ) ) | 
						
							| 180 | 177 179 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ∪  𝑗  ∈  ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 )  ∪  ( ( 𝐸 ‘ ( 𝑖  +  1 ) )  ∖  ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) )  =  ( 𝐺 ‘ 𝑖 ) ) | 
						
							| 181 | 146 161 180 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( 𝐺 ‘ ( 𝑖  +  1 ) )  ∖  ( 𝐸 ‘ ( 𝑖  +  1 ) ) )  =  ( 𝐺 ‘ 𝑖 ) ) | 
						
							| 182 | 181 | fveq2d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖  +  1 ) )  ∖  ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) )  =  ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) ) | 
						
							| 183 | 140 182 | oveq12d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖  +  1 ) )  ∩  ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) )  +𝑒  ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖  +  1 ) )  ∖  ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) ) )  =  ( ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖  +  1 ) ) )  +𝑒  ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) ) ) | 
						
							| 184 | 183 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 )  ∧  ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑖 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) )  →  ( ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖  +  1 ) )  ∩  ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) )  +𝑒  ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖  +  1 ) )  ∖  ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) ) )  =  ( ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖  +  1 ) ) )  +𝑒  ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) ) ) | 
						
							| 185 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝑂  ∈  OutMeas ) | 
						
							| 186 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  𝐸 : 𝑍 ⟶ 𝑆 ) | 
						
							| 187 | 186 129 | ffvelcdmd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝐸 ‘ ( 𝑖  +  1 ) )  ∈  𝑆 ) | 
						
							| 188 |  | simpll | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑗  ∈  ( 𝑀 ... ( 𝑖  +  1 ) ) )  →  𝜑 ) | 
						
							| 189 | 92 | adantr | ⊢ ( ( 𝑖  ∈  ( 𝑀 ..^ 𝑁 )  ∧  𝑗  ∈  ( 𝑀 ... ( 𝑖  +  1 ) ) )  →  𝑀  ∈  ℤ ) | 
						
							| 190 |  | elfzelz | ⊢ ( 𝑗  ∈  ( 𝑀 ... ( 𝑖  +  1 ) )  →  𝑗  ∈  ℤ ) | 
						
							| 191 | 190 | adantl | ⊢ ( ( 𝑖  ∈  ( 𝑀 ..^ 𝑁 )  ∧  𝑗  ∈  ( 𝑀 ... ( 𝑖  +  1 ) ) )  →  𝑗  ∈  ℤ ) | 
						
							| 192 |  | elfzle1 | ⊢ ( 𝑗  ∈  ( 𝑀 ... ( 𝑖  +  1 ) )  →  𝑀  ≤  𝑗 ) | 
						
							| 193 | 192 | adantl | ⊢ ( ( 𝑖  ∈  ( 𝑀 ..^ 𝑁 )  ∧  𝑗  ∈  ( 𝑀 ... ( 𝑖  +  1 ) ) )  →  𝑀  ≤  𝑗 ) | 
						
							| 194 | 189 191 193 | 3jca | ⊢ ( ( 𝑖  ∈  ( 𝑀 ..^ 𝑁 )  ∧  𝑗  ∈  ( 𝑀 ... ( 𝑖  +  1 ) ) )  →  ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℤ  ∧  𝑀  ≤  𝑗 ) ) | 
						
							| 195 |  | eluz2 | ⊢ ( 𝑗  ∈  ( ℤ≥ ‘ 𝑀 )  ↔  ( 𝑀  ∈  ℤ  ∧  𝑗  ∈  ℤ  ∧  𝑀  ≤  𝑗 ) ) | 
						
							| 196 | 194 195 | sylibr | ⊢ ( ( 𝑖  ∈  ( 𝑀 ..^ 𝑁 )  ∧  𝑗  ∈  ( 𝑀 ... ( 𝑖  +  1 ) ) )  →  𝑗  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 197 | 196 128 | eleqtrdi | ⊢ ( ( 𝑖  ∈  ( 𝑀 ..^ 𝑁 )  ∧  𝑗  ∈  ( 𝑀 ... ( 𝑖  +  1 ) ) )  →  𝑗  ∈  𝑍 ) | 
						
							| 198 | 197 | adantll | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑗  ∈  ( 𝑀 ... ( 𝑖  +  1 ) ) )  →  𝑗  ∈  𝑍 ) | 
						
							| 199 | 1 43 | syl | ⊢ ( 𝜑  →  𝑆  ⊆  dom  𝑂 ) | 
						
							| 200 | 199 | adantr | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  𝑆  ⊆  dom  𝑂 ) | 
						
							| 201 | 4 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑗 )  ∈  𝑆 ) | 
						
							| 202 | 200 201 | sseldd | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑗 )  ∈  dom  𝑂 ) | 
						
							| 203 |  | elssuni | ⊢ ( ( 𝐸 ‘ 𝑗 )  ∈  dom  𝑂  →  ( 𝐸 ‘ 𝑗 )  ⊆  ∪  dom  𝑂 ) | 
						
							| 204 | 202 203 | syl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑗 )  ⊆  ∪  dom  𝑂 ) | 
						
							| 205 | 188 198 204 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑗  ∈  ( 𝑀 ... ( 𝑖  +  1 ) ) )  →  ( 𝐸 ‘ 𝑗 )  ⊆  ∪  dom  𝑂 ) | 
						
							| 206 | 205 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ∀ 𝑗  ∈  ( 𝑀 ... ( 𝑖  +  1 ) ) ( 𝐸 ‘ 𝑗 )  ⊆  ∪  dom  𝑂 ) | 
						
							| 207 |  | iunss | ⊢ ( ∪  𝑗  ∈  ( 𝑀 ... ( 𝑖  +  1 ) ) ( 𝐸 ‘ 𝑗 )  ⊆  ∪  dom  𝑂  ↔  ∀ 𝑗  ∈  ( 𝑀 ... ( 𝑖  +  1 ) ) ( 𝐸 ‘ 𝑗 )  ⊆  ∪  dom  𝑂 ) | 
						
							| 208 | 206 207 | sylibr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ∪  𝑗  ∈  ( 𝑀 ... ( 𝑖  +  1 ) ) ( 𝐸 ‘ 𝑗 )  ⊆  ∪  dom  𝑂 ) | 
						
							| 209 | 134 208 | eqsstrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝐺 ‘ ( 𝑖  +  1 ) )  ⊆  ∪  dom  𝑂 ) | 
						
							| 210 | 185 2 42 187 209 | caragensplit | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖  +  1 ) )  ∩  ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) )  +𝑒  ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖  +  1 ) )  ∖  ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) ) )  =  ( 𝑂 ‘ ( 𝐺 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 211 | 210 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑂 ‘ ( 𝐺 ‘ ( 𝑖  +  1 ) ) )  =  ( ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖  +  1 ) )  ∩  ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) )  +𝑒  ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖  +  1 ) )  ∖  ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 212 | 211 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 )  ∧  ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑖 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) )  →  ( 𝑂 ‘ ( 𝐺 ‘ ( 𝑖  +  1 ) ) )  =  ( ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖  +  1 ) )  ∩  ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) )  +𝑒  ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖  +  1 ) )  ∖  ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) ) ) ) | 
						
							| 213 | 185 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑛  ∈  ( 𝑀 ... ( 𝑖  +  1 ) ) )  →  𝑂  ∈  OutMeas ) | 
						
							| 214 | 162 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑛  ∈  ( 𝑀 ... ( 𝑖  +  1 ) ) )  →  𝜑 ) | 
						
							| 215 |  | elfzuz | ⊢ ( 𝑛  ∈  ( 𝑀 ... ( 𝑖  +  1 ) )  →  𝑛  ∈  ( ℤ≥ ‘ 𝑀 ) ) | 
						
							| 216 | 215 128 | eleqtrdi | ⊢ ( 𝑛  ∈  ( 𝑀 ... ( 𝑖  +  1 ) )  →  𝑛  ∈  𝑍 ) | 
						
							| 217 | 216 | adantl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑛  ∈  ( 𝑀 ... ( 𝑖  +  1 ) ) )  →  𝑛  ∈  𝑍 ) | 
						
							| 218 | 4 199 | fssd | ⊢ ( 𝜑  →  𝐸 : 𝑍 ⟶ dom  𝑂 ) | 
						
							| 219 | 218 | ffvelcdmda | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑛 )  ∈  dom  𝑂 ) | 
						
							| 220 | 219 55 | syl | ⊢ ( ( 𝜑  ∧  𝑛  ∈  𝑍 )  →  ( 𝐸 ‘ 𝑛 )  ⊆  ∪  dom  𝑂 ) | 
						
							| 221 | 214 217 220 | syl2anc | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑛  ∈  ( 𝑀 ... ( 𝑖  +  1 ) ) )  →  ( 𝐸 ‘ 𝑛 )  ⊆  ∪  dom  𝑂 ) | 
						
							| 222 | 213 42 221 | omecl | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  ∧  𝑛  ∈  ( 𝑀 ... ( 𝑖  +  1 ) ) )  →  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) )  ∈  ( 0 [,] +∞ ) ) | 
						
							| 223 |  | 2fveq3 | ⊢ ( 𝑛  =  ( 𝑖  +  1 )  →  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) )  =  ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) ) | 
						
							| 224 | 143 222 223 | sge0p1 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... ( 𝑖  +  1 ) )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) )  =  ( ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑖 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) )  +𝑒  ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 225 | 224 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 )  ∧  ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑖 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) )  →  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... ( 𝑖  +  1 ) )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) )  =  ( ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑖 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) )  +𝑒  ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 226 |  | id | ⊢ ( ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑖 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) )  →  ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑖 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) | 
						
							| 227 | 226 | eqcomd | ⊢ ( ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑖 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) )  →  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑖 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) )  =  ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) ) | 
						
							| 228 | 227 | oveq1d | ⊢ ( ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑖 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) )  →  ( ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑖 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) )  +𝑒  ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) )  +𝑒  ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 229 | 228 | 3ad2ant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 )  ∧  ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑖 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) )  →  ( ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑖 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) )  +𝑒  ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) )  +𝑒  ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) ) ) | 
						
							| 230 |  | simpl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... 𝑖 ) )  →  𝜑 ) | 
						
							| 231 | 152 | sseli | ⊢ ( 𝑗  ∈  ( 𝑀 ... 𝑖 )  →  𝑗  ∈  𝑍 ) | 
						
							| 232 | 231 | adantl | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... 𝑖 ) )  →  𝑗  ∈  𝑍 ) | 
						
							| 233 | 230 232 204 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑗  ∈  ( 𝑀 ... 𝑖 ) )  →  ( 𝐸 ‘ 𝑗 )  ⊆  ∪  dom  𝑂 ) | 
						
							| 234 | 233 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  ∧  𝑗  ∈  ( 𝑀 ... 𝑖 ) )  →  ( 𝐸 ‘ 𝑗 )  ⊆  ∪  dom  𝑂 ) | 
						
							| 235 | 234 | ralrimiva | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  →  ∀ 𝑗  ∈  ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 )  ⊆  ∪  dom  𝑂 ) | 
						
							| 236 |  | iunss | ⊢ ( ∪  𝑗  ∈  ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 )  ⊆  ∪  dom  𝑂  ↔  ∀ 𝑗  ∈  ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 )  ⊆  ∪  dom  𝑂 ) | 
						
							| 237 | 235 236 | sylibr | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  →  ∪  𝑗  ∈  ( 𝑀 ... 𝑖 ) ( 𝐸 ‘ 𝑗 )  ⊆  ∪  dom  𝑂 ) | 
						
							| 238 | 172 237 | eqsstrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  𝑍 )  →  ( 𝐺 ‘ 𝑖 )  ⊆  ∪  dom  𝑂 ) | 
						
							| 239 | 162 163 238 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝐺 ‘ 𝑖 )  ⊆  ∪  dom  𝑂 ) | 
						
							| 240 | 185 42 239 | omexrcl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) )  ∈  ℝ* ) | 
						
							| 241 | 108 208 | sstrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝐸 ‘ ( 𝑖  +  1 ) )  ⊆  ∪  dom  𝑂 ) | 
						
							| 242 | 185 42 241 | omexrcl | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖  +  1 ) ) )  ∈  ℝ* ) | 
						
							| 243 | 240 242 | xaddcomd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 ) )  →  ( ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) )  +𝑒  ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖  +  1 ) ) )  +𝑒  ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) ) ) | 
						
							| 244 | 243 | 3adant3 | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 )  ∧  ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑖 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) )  →  ( ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) )  +𝑒  ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖  +  1 ) ) ) )  =  ( ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖  +  1 ) ) )  +𝑒  ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) ) ) | 
						
							| 245 | 225 229 244 | 3eqtrd | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 )  ∧  ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑖 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) )  →  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... ( 𝑖  +  1 ) )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) )  =  ( ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖  +  1 ) ) )  +𝑒  ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) ) ) ) | 
						
							| 246 | 184 212 245 | 3eqtr4d | ⊢ ( ( 𝜑  ∧  𝑖  ∈  ( 𝑀 ..^ 𝑁 )  ∧  ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑖 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) )  →  ( 𝑂 ‘ ( 𝐺 ‘ ( 𝑖  +  1 ) ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... ( 𝑖  +  1 ) )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) | 
						
							| 247 | 87 88 91 246 | syl3anc | ⊢ ( ( 𝑖  ∈  ( 𝑀 ..^ 𝑁 )  ∧  ( 𝜑  →  ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑖 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) )  ∧  𝜑 )  →  ( 𝑂 ‘ ( 𝐺 ‘ ( 𝑖  +  1 ) ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... ( 𝑖  +  1 ) )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) | 
						
							| 248 | 247 | 3exp | ⊢ ( 𝑖  ∈  ( 𝑀 ..^ 𝑁 )  →  ( ( 𝜑  →  ( 𝑂 ‘ ( 𝐺 ‘ 𝑖 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑖 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) )  →  ( 𝜑  →  ( 𝑂 ‘ ( 𝐺 ‘ ( 𝑖  +  1 ) ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... ( 𝑖  +  1 ) )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) ) ) | 
						
							| 249 | 16 22 28 34 86 248 | fzind2 | ⊢ ( 𝑁  ∈  ( 𝑀 ... 𝑁 )  →  ( 𝜑  →  ( 𝑂 ‘ ( 𝐺 ‘ 𝑁 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑁 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) ) | 
						
							| 250 | 9 10 249 | sylc | ⊢ ( 𝜑  →  ( 𝑂 ‘ ( 𝐺 ‘ 𝑁 ) )  =  ( Σ^ ‘ ( 𝑛  ∈  ( 𝑀 ... 𝑁 )  ↦  ( 𝑂 ‘ ( 𝐸 ‘ 𝑛 ) ) ) ) ) |