Metamath Proof Explorer


Theorem caratheodorylem1

Description: Lemma used to prove that Caratheodory's construction is sigma-additive. This is the proof of the statement in the middle of Step (e) in the proof of Theorem 113C of Fremlin1 p. 21. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses caratheodorylem1.o ( 𝜑𝑂 ∈ OutMeas )
caratheodorylem1.s 𝑆 = ( CaraGen ‘ 𝑂 )
caratheodorylem1.z 𝑍 = ( ℤ𝑀 )
caratheodorylem1.e ( 𝜑𝐸 : 𝑍𝑆 )
caratheodorylem1.dj ( 𝜑Disj 𝑛𝑍 ( 𝐸𝑛 ) )
caratheodorylem1.g 𝐺 = ( 𝑛𝑍 𝑖 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸𝑖 ) )
caratheodorylem1.n ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
Assertion caratheodorylem1 ( 𝜑 → ( 𝑂 ‘ ( 𝐺𝑁 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) )

Proof

Step Hyp Ref Expression
1 caratheodorylem1.o ( 𝜑𝑂 ∈ OutMeas )
2 caratheodorylem1.s 𝑆 = ( CaraGen ‘ 𝑂 )
3 caratheodorylem1.z 𝑍 = ( ℤ𝑀 )
4 caratheodorylem1.e ( 𝜑𝐸 : 𝑍𝑆 )
5 caratheodorylem1.dj ( 𝜑Disj 𝑛𝑍 ( 𝐸𝑛 ) )
6 caratheodorylem1.g 𝐺 = ( 𝑛𝑍 𝑖 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸𝑖 ) )
7 caratheodorylem1.n ( 𝜑𝑁 ∈ ( ℤ𝑀 ) )
8 eluzfz2 ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑁 ∈ ( 𝑀 ... 𝑁 ) )
9 7 8 syl ( 𝜑𝑁 ∈ ( 𝑀 ... 𝑁 ) )
10 id ( 𝜑𝜑 )
11 2fveq3 ( 𝑗 = 𝑀 → ( 𝑂 ‘ ( 𝐺𝑗 ) ) = ( 𝑂 ‘ ( 𝐺𝑀 ) ) )
12 oveq2 ( 𝑗 = 𝑀 → ( 𝑀 ... 𝑗 ) = ( 𝑀 ... 𝑀 ) )
13 12 mpteq1d ( 𝑗 = 𝑀 → ( 𝑛 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) = ( 𝑛 ∈ ( 𝑀 ... 𝑀 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) )
14 13 fveq2d ( 𝑗 = 𝑀 → ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑀 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) )
15 11 14 eqeq12d ( 𝑗 = 𝑀 → ( ( 𝑂 ‘ ( 𝐺𝑗 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ↔ ( 𝑂 ‘ ( 𝐺𝑀 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑀 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ) )
16 15 imbi2d ( 𝑗 = 𝑀 → ( ( 𝜑 → ( 𝑂 ‘ ( 𝐺𝑗 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ) ↔ ( 𝜑 → ( 𝑂 ‘ ( 𝐺𝑀 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑀 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ) ) )
17 2fveq3 ( 𝑗 = 𝑖 → ( 𝑂 ‘ ( 𝐺𝑗 ) ) = ( 𝑂 ‘ ( 𝐺𝑖 ) ) )
18 oveq2 ( 𝑗 = 𝑖 → ( 𝑀 ... 𝑗 ) = ( 𝑀 ... 𝑖 ) )
19 18 mpteq1d ( 𝑗 = 𝑖 → ( 𝑛 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) = ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) )
20 19 fveq2d ( 𝑗 = 𝑖 → ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) )
21 17 20 eqeq12d ( 𝑗 = 𝑖 → ( ( 𝑂 ‘ ( 𝐺𝑗 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ↔ ( 𝑂 ‘ ( 𝐺𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ) )
22 21 imbi2d ( 𝑗 = 𝑖 → ( ( 𝜑 → ( 𝑂 ‘ ( 𝐺𝑗 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ) ↔ ( 𝜑 → ( 𝑂 ‘ ( 𝐺𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ) ) )
23 2fveq3 ( 𝑗 = ( 𝑖 + 1 ) → ( 𝑂 ‘ ( 𝐺𝑗 ) ) = ( 𝑂 ‘ ( 𝐺 ‘ ( 𝑖 + 1 ) ) ) )
24 oveq2 ( 𝑗 = ( 𝑖 + 1 ) → ( 𝑀 ... 𝑗 ) = ( 𝑀 ... ( 𝑖 + 1 ) ) )
25 24 mpteq1d ( 𝑗 = ( 𝑖 + 1 ) → ( 𝑛 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) = ( 𝑛 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) )
26 25 fveq2d ( 𝑗 = ( 𝑖 + 1 ) → ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) )
27 23 26 eqeq12d ( 𝑗 = ( 𝑖 + 1 ) → ( ( 𝑂 ‘ ( 𝐺𝑗 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ↔ ( 𝑂 ‘ ( 𝐺 ‘ ( 𝑖 + 1 ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ) )
28 27 imbi2d ( 𝑗 = ( 𝑖 + 1 ) → ( ( 𝜑 → ( 𝑂 ‘ ( 𝐺𝑗 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ) ↔ ( 𝜑 → ( 𝑂 ‘ ( 𝐺 ‘ ( 𝑖 + 1 ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ) ) )
29 2fveq3 ( 𝑗 = 𝑁 → ( 𝑂 ‘ ( 𝐺𝑗 ) ) = ( 𝑂 ‘ ( 𝐺𝑁 ) ) )
30 oveq2 ( 𝑗 = 𝑁 → ( 𝑀 ... 𝑗 ) = ( 𝑀 ... 𝑁 ) )
31 30 mpteq1d ( 𝑗 = 𝑁 → ( 𝑛 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) = ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) )
32 31 fveq2d ( 𝑗 = 𝑁 → ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) )
33 29 32 eqeq12d ( 𝑗 = 𝑁 → ( ( 𝑂 ‘ ( 𝐺𝑗 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ↔ ( 𝑂 ‘ ( 𝐺𝑁 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ) )
34 33 imbi2d ( 𝑗 = 𝑁 → ( ( 𝜑 → ( 𝑂 ‘ ( 𝐺𝑗 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑗 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ) ↔ ( 𝜑 → ( 𝑂 ‘ ( 𝐺𝑁 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ) ) )
35 eluzel2 ( 𝑁 ∈ ( ℤ𝑀 ) → 𝑀 ∈ ℤ )
36 7 35 syl ( 𝜑𝑀 ∈ ℤ )
37 fzsn ( 𝑀 ∈ ℤ → ( 𝑀 ... 𝑀 ) = { 𝑀 } )
38 36 37 syl ( 𝜑 → ( 𝑀 ... 𝑀 ) = { 𝑀 } )
39 38 mpteq1d ( 𝜑 → ( 𝑛 ∈ ( 𝑀 ... 𝑀 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) = ( 𝑛 ∈ { 𝑀 } ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) )
40 39 fveq2d ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑀 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ { 𝑀 } ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) )
41 1 adantr ( ( 𝜑𝑛 ∈ { 𝑀 } ) → 𝑂 ∈ OutMeas )
42 eqid dom 𝑂 = dom 𝑂
43 2 caragenss ( 𝑂 ∈ OutMeas → 𝑆 ⊆ dom 𝑂 )
44 41 43 syl ( ( 𝜑𝑛 ∈ { 𝑀 } ) → 𝑆 ⊆ dom 𝑂 )
45 4 adantr ( ( 𝜑𝑛 ∈ { 𝑀 } ) → 𝐸 : 𝑍𝑆 )
46 elsni ( 𝑛 ∈ { 𝑀 } → 𝑛 = 𝑀 )
47 46 adantl ( ( 𝜑𝑛 ∈ { 𝑀 } ) → 𝑛 = 𝑀 )
48 uzid ( 𝑀 ∈ ℤ → 𝑀 ∈ ( ℤ𝑀 ) )
49 36 48 syl ( 𝜑𝑀 ∈ ( ℤ𝑀 ) )
50 49 3 eleqtrrdi ( 𝜑𝑀𝑍 )
51 50 adantr ( ( 𝜑𝑛 ∈ { 𝑀 } ) → 𝑀𝑍 )
52 47 51 eqeltrd ( ( 𝜑𝑛 ∈ { 𝑀 } ) → 𝑛𝑍 )
53 45 52 ffvelrnd ( ( 𝜑𝑛 ∈ { 𝑀 } ) → ( 𝐸𝑛 ) ∈ 𝑆 )
54 44 53 sseldd ( ( 𝜑𝑛 ∈ { 𝑀 } ) → ( 𝐸𝑛 ) ∈ dom 𝑂 )
55 elssuni ( ( 𝐸𝑛 ) ∈ dom 𝑂 → ( 𝐸𝑛 ) ⊆ dom 𝑂 )
56 54 55 syl ( ( 𝜑𝑛 ∈ { 𝑀 } ) → ( 𝐸𝑛 ) ⊆ dom 𝑂 )
57 41 42 56 omecl ( ( 𝜑𝑛 ∈ { 𝑀 } ) → ( 𝑂 ‘ ( 𝐸𝑛 ) ) ∈ ( 0 [,] +∞ ) )
58 eqid ( 𝑛 ∈ { 𝑀 } ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) = ( 𝑛 ∈ { 𝑀 } ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) )
59 57 58 fmptd ( 𝜑 → ( 𝑛 ∈ { 𝑀 } ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) : { 𝑀 } ⟶ ( 0 [,] +∞ ) )
60 36 59 sge0sn ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ { 𝑀 } ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) = ( ( 𝑛 ∈ { 𝑀 } ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ‘ 𝑀 ) )
61 eqidd ( 𝜑 → ( 𝑛 ∈ { 𝑀 } ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) = ( 𝑛 ∈ { 𝑀 } ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) )
62 38 iuneq1d ( 𝜑 𝑖 ∈ ( 𝑀 ... 𝑀 ) ( 𝐸𝑖 ) = 𝑖 ∈ { 𝑀 } ( 𝐸𝑖 ) )
63 fveq2 ( 𝑖 = 𝑀 → ( 𝐸𝑖 ) = ( 𝐸𝑀 ) )
64 63 iunxsng ( 𝑀𝑍 𝑖 ∈ { 𝑀 } ( 𝐸𝑖 ) = ( 𝐸𝑀 ) )
65 50 64 syl ( 𝜑 𝑖 ∈ { 𝑀 } ( 𝐸𝑖 ) = ( 𝐸𝑀 ) )
66 eqidd ( 𝜑 → ( 𝐸𝑀 ) = ( 𝐸𝑀 ) )
67 62 65 66 3eqtrrd ( 𝜑 → ( 𝐸𝑀 ) = 𝑖 ∈ ( 𝑀 ... 𝑀 ) ( 𝐸𝑖 ) )
68 67 adantr ( ( 𝜑𝑛 = 𝑀 ) → ( 𝐸𝑀 ) = 𝑖 ∈ ( 𝑀 ... 𝑀 ) ( 𝐸𝑖 ) )
69 fveq2 ( 𝑛 = 𝑀 → ( 𝐸𝑛 ) = ( 𝐸𝑀 ) )
70 69 adantl ( ( 𝜑𝑛 = 𝑀 ) → ( 𝐸𝑛 ) = ( 𝐸𝑀 ) )
71 oveq2 ( 𝑛 = 𝑀 → ( 𝑀 ... 𝑛 ) = ( 𝑀 ... 𝑀 ) )
72 71 iuneq1d ( 𝑛 = 𝑀 𝑖 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸𝑖 ) = 𝑖 ∈ ( 𝑀 ... 𝑀 ) ( 𝐸𝑖 ) )
73 ovex ( 𝑀 ... 𝑀 ) ∈ V
74 fvex ( 𝐸𝑖 ) ∈ V
75 73 74 iunex 𝑖 ∈ ( 𝑀 ... 𝑀 ) ( 𝐸𝑖 ) ∈ V
76 75 a1i ( 𝜑 𝑖 ∈ ( 𝑀 ... 𝑀 ) ( 𝐸𝑖 ) ∈ V )
77 6 72 50 76 fvmptd3 ( 𝜑 → ( 𝐺𝑀 ) = 𝑖 ∈ ( 𝑀 ... 𝑀 ) ( 𝐸𝑖 ) )
78 77 adantr ( ( 𝜑𝑛 = 𝑀 ) → ( 𝐺𝑀 ) = 𝑖 ∈ ( 𝑀 ... 𝑀 ) ( 𝐸𝑖 ) )
79 68 70 78 3eqtr4d ( ( 𝜑𝑛 = 𝑀 ) → ( 𝐸𝑛 ) = ( 𝐺𝑀 ) )
80 79 fveq2d ( ( 𝜑𝑛 = 𝑀 ) → ( 𝑂 ‘ ( 𝐸𝑛 ) ) = ( 𝑂 ‘ ( 𝐺𝑀 ) ) )
81 snidg ( 𝑀𝑍𝑀 ∈ { 𝑀 } )
82 50 81 syl ( 𝜑𝑀 ∈ { 𝑀 } )
83 fvexd ( 𝜑 → ( 𝑂 ‘ ( 𝐺𝑀 ) ) ∈ V )
84 61 80 82 83 fvmptd ( 𝜑 → ( ( 𝑛 ∈ { 𝑀 } ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ‘ 𝑀 ) = ( 𝑂 ‘ ( 𝐺𝑀 ) ) )
85 40 60 84 3eqtrrd ( 𝜑 → ( 𝑂 ‘ ( 𝐺𝑀 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑀 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) )
86 85 a1i ( 𝑁 ∈ ( ℤ𝑀 ) → ( 𝜑 → ( 𝑂 ‘ ( 𝐺𝑀 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑀 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ) )
87 simp3 ( ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( 𝜑 → ( 𝑂 ‘ ( 𝐺𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ) ∧ 𝜑 ) → 𝜑 )
88 simp1 ( ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( 𝜑 → ( 𝑂 ‘ ( 𝐺𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ) ∧ 𝜑 ) → 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) )
89 id ( ( 𝜑 → ( 𝑂 ‘ ( 𝐺𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ) → ( 𝜑 → ( 𝑂 ‘ ( 𝐺𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ) )
90 89 imp ( ( ( 𝜑 → ( 𝑂 ‘ ( 𝐺𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ) ∧ 𝜑 ) → ( 𝑂 ‘ ( 𝐺𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) )
91 90 3adant1 ( ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( 𝜑 → ( 𝑂 ‘ ( 𝐺𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ) ∧ 𝜑 ) → ( 𝑂 ‘ ( 𝐺𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) )
92 elfzoel1 ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑀 ∈ ℤ )
93 elfzoelz ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑖 ∈ ℤ )
94 93 peano2zd ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝑖 + 1 ) ∈ ℤ )
95 92 zred ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑀 ∈ ℝ )
96 94 zred ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝑖 + 1 ) ∈ ℝ )
97 93 zred ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑖 ∈ ℝ )
98 elfzole1 ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑀𝑖 )
99 97 ltp1d ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑖 < ( 𝑖 + 1 ) )
100 95 97 96 98 99 lelttrd ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑀 < ( 𝑖 + 1 ) )
101 95 96 100 ltled ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑀 ≤ ( 𝑖 + 1 ) )
102 leid ( ( 𝑖 + 1 ) ∈ ℝ → ( 𝑖 + 1 ) ≤ ( 𝑖 + 1 ) )
103 96 102 syl ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝑖 + 1 ) ≤ ( 𝑖 + 1 ) )
104 92 94 94 101 103 elfzd ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) → ( 𝑖 + 1 ) ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) )
105 104 adantl ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑖 + 1 ) ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) )
106 fveq2 ( 𝑗 = ( 𝑖 + 1 ) → ( 𝐸𝑗 ) = ( 𝐸 ‘ ( 𝑖 + 1 ) ) )
107 106 ssiun2s ( ( 𝑖 + 1 ) ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) → ( 𝐸 ‘ ( 𝑖 + 1 ) ) ⊆ 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ( 𝐸𝑗 ) )
108 105 107 syl ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐸 ‘ ( 𝑖 + 1 ) ) ⊆ 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ( 𝐸𝑗 ) )
109 fveq2 ( 𝑖 = 𝑗 → ( 𝐸𝑖 ) = ( 𝐸𝑗 ) )
110 109 cbviunv 𝑖 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸𝑖 ) = 𝑗 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸𝑗 )
111 110 mpteq2i ( 𝑛𝑍 𝑖 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸𝑖 ) ) = ( 𝑛𝑍 𝑗 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸𝑗 ) )
112 6 111 eqtri 𝐺 = ( 𝑛𝑍 𝑗 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸𝑗 ) )
113 oveq2 ( 𝑛 = ( 𝑖 + 1 ) → ( 𝑀 ... 𝑛 ) = ( 𝑀 ... ( 𝑖 + 1 ) ) )
114 113 iuneq1d ( 𝑛 = ( 𝑖 + 1 ) → 𝑗 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸𝑗 ) = 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ( 𝐸𝑗 ) )
115 36 adantr ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑀 ∈ ℤ )
116 93 adantl ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑖 ∈ ℤ )
117 116 peano2zd ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑖 + 1 ) ∈ ℤ )
118 115 zred ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑀 ∈ ℝ )
119 117 zred ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑖 + 1 ) ∈ ℝ )
120 116 zred ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑖 ∈ ℝ )
121 98 adantl ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑀𝑖 )
122 120 ltp1d ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑖 < ( 𝑖 + 1 ) )
123 118 120 119 121 122 lelttrd ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑀 < ( 𝑖 + 1 ) )
124 118 119 123 ltled ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑀 ≤ ( 𝑖 + 1 ) )
125 115 117 124 3jca ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑀 ∈ ℤ ∧ ( 𝑖 + 1 ) ∈ ℤ ∧ 𝑀 ≤ ( 𝑖 + 1 ) ) )
126 eluz2 ( ( 𝑖 + 1 ) ∈ ( ℤ𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ ( 𝑖 + 1 ) ∈ ℤ ∧ 𝑀 ≤ ( 𝑖 + 1 ) ) )
127 125 126 sylibr ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑖 + 1 ) ∈ ( ℤ𝑀 ) )
128 3 eqcomi ( ℤ𝑀 ) = 𝑍
129 127 128 eleqtrdi ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑖 + 1 ) ∈ 𝑍 )
130 ovex ( 𝑀 ... ( 𝑖 + 1 ) ) ∈ V
131 fvex ( 𝐸𝑗 ) ∈ V
132 130 131 iunex 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ( 𝐸𝑗 ) ∈ V
133 132 a1i ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ( 𝐸𝑗 ) ∈ V )
134 112 114 129 133 fvmptd3 ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐺 ‘ ( 𝑖 + 1 ) ) = 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ( 𝐸𝑗 ) )
135 134 eqcomd ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ( 𝐸𝑗 ) = ( 𝐺 ‘ ( 𝑖 + 1 ) ) )
136 108 135 sseqtrd ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐸 ‘ ( 𝑖 + 1 ) ) ⊆ ( 𝐺 ‘ ( 𝑖 + 1 ) ) )
137 sseqin2 ( ( 𝐸 ‘ ( 𝑖 + 1 ) ) ⊆ ( 𝐺 ‘ ( 𝑖 + 1 ) ) ↔ ( ( 𝐺 ‘ ( 𝑖 + 1 ) ) ∩ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) = ( 𝐸 ‘ ( 𝑖 + 1 ) ) )
138 137 biimpi ( ( 𝐸 ‘ ( 𝑖 + 1 ) ) ⊆ ( 𝐺 ‘ ( 𝑖 + 1 ) ) → ( ( 𝐺 ‘ ( 𝑖 + 1 ) ) ∩ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) = ( 𝐸 ‘ ( 𝑖 + 1 ) ) )
139 136 138 syl ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝐺 ‘ ( 𝑖 + 1 ) ) ∩ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) = ( 𝐸 ‘ ( 𝑖 + 1 ) ) )
140 139 fveq2d ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖 + 1 ) ) ∩ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) )
141 nfcv 𝑗 ( 𝐸 ‘ ( 𝑖 + 1 ) )
142 elfzouz ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) → 𝑖 ∈ ( ℤ𝑀 ) )
143 142 adantl ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑖 ∈ ( ℤ𝑀 ) )
144 141 143 106 iunp1 ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ( 𝐸𝑗 ) = ( 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸𝑗 ) ∪ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) )
145 134 144 eqtrd ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐺 ‘ ( 𝑖 + 1 ) ) = ( 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸𝑗 ) ∪ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) )
146 145 difeq1d ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝐺 ‘ ( 𝑖 + 1 ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸𝑗 ) ∪ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) )
147 fveq2 ( 𝑛 = 𝑗 → ( 𝐸𝑛 ) = ( 𝐸𝑗 ) )
148 147 cbvdisjv ( Disj 𝑛𝑍 ( 𝐸𝑛 ) ↔ Disj 𝑗𝑍 ( 𝐸𝑗 ) )
149 5 148 sylib ( 𝜑Disj 𝑗𝑍 ( 𝐸𝑗 ) )
150 149 adantr ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → Disj 𝑗𝑍 ( 𝐸𝑗 ) )
151 fzssuz ( 𝑀 ... 𝑖 ) ⊆ ( ℤ𝑀 )
152 151 128 sseqtri ( 𝑀 ... 𝑖 ) ⊆ 𝑍
153 152 a1i ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑀 ... 𝑖 ) ⊆ 𝑍 )
154 fzp1nel ¬ ( 𝑖 + 1 ) ∈ ( 𝑀 ... 𝑖 )
155 154 a1i ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) → ¬ ( 𝑖 + 1 ) ∈ ( 𝑀 ... 𝑖 ) )
156 155 adantl ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ¬ ( 𝑖 + 1 ) ∈ ( 𝑀 ... 𝑖 ) )
157 129 156 eldifd ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑖 + 1 ) ∈ ( 𝑍 ∖ ( 𝑀 ... 𝑖 ) ) )
158 150 153 157 106 disjiun2 ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸𝑗 ) ∩ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) = ∅ )
159 undif4 ( ( 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸𝑗 ) ∩ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) = ∅ → ( 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸𝑗 ) ∪ ( ( 𝐸 ‘ ( 𝑖 + 1 ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸𝑗 ) ∪ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) )
160 158 159 syl ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸𝑗 ) ∪ ( ( 𝐸 ‘ ( 𝑖 + 1 ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸𝑗 ) ∪ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) )
161 160 eqcomd ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸𝑗 ) ∪ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) = ( 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸𝑗 ) ∪ ( ( 𝐸 ‘ ( 𝑖 + 1 ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) )
162 simpl ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝜑 )
163 143 128 eleqtrdi ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑖𝑍 )
164 112 a1i ( ( 𝜑𝑖𝑍 ) → 𝐺 = ( 𝑛𝑍 𝑗 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸𝑗 ) ) )
165 simpr ( ( ( 𝜑𝑖𝑍 ) ∧ 𝑛 = 𝑖 ) → 𝑛 = 𝑖 )
166 165 oveq2d ( ( ( 𝜑𝑖𝑍 ) ∧ 𝑛 = 𝑖 ) → ( 𝑀 ... 𝑛 ) = ( 𝑀 ... 𝑖 ) )
167 166 iuneq1d ( ( ( 𝜑𝑖𝑍 ) ∧ 𝑛 = 𝑖 ) → 𝑗 ∈ ( 𝑀 ... 𝑛 ) ( 𝐸𝑗 ) = 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸𝑗 ) )
168 simpr ( ( 𝜑𝑖𝑍 ) → 𝑖𝑍 )
169 ovex ( 𝑀 ... 𝑖 ) ∈ V
170 169 131 iunex 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸𝑗 ) ∈ V
171 170 a1i ( ( 𝜑𝑖𝑍 ) → 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸𝑗 ) ∈ V )
172 164 167 168 171 fvmptd ( ( 𝜑𝑖𝑍 ) → ( 𝐺𝑖 ) = 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸𝑗 ) )
173 162 163 172 syl2anc ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐺𝑖 ) = 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸𝑗 ) )
174 173 eqcomd ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸𝑗 ) = ( 𝐺𝑖 ) )
175 difid ( ( 𝐸 ‘ ( 𝑖 + 1 ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) = ∅
176 175 a1i ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝐸 ‘ ( 𝑖 + 1 ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) = ∅ )
177 174 176 uneq12d ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸𝑗 ) ∪ ( ( 𝐸 ‘ ( 𝑖 + 1 ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝐺𝑖 ) ∪ ∅ ) )
178 un0 ( ( 𝐺𝑖 ) ∪ ∅ ) = ( 𝐺𝑖 )
179 178 a1i ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝐺𝑖 ) ∪ ∅ ) = ( 𝐺𝑖 ) )
180 177 179 eqtrd ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸𝑗 ) ∪ ( ( 𝐸 ‘ ( 𝑖 + 1 ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝐺𝑖 ) )
181 146 161 180 3eqtrd ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝐺 ‘ ( 𝑖 + 1 ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) = ( 𝐺𝑖 ) )
182 181 fveq2d ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖 + 1 ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) = ( 𝑂 ‘ ( 𝐺𝑖 ) ) )
183 140 182 oveq12d ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖 + 1 ) ) ∩ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖 + 1 ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) ) = ( ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐺𝑖 ) ) ) )
184 183 3adant3 ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( 𝑂 ‘ ( 𝐺𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ) → ( ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖 + 1 ) ) ∩ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖 + 1 ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) ) = ( ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐺𝑖 ) ) ) )
185 1 adantr ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑂 ∈ OutMeas )
186 4 adantr ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝐸 : 𝑍𝑆 )
187 186 129 ffvelrnd ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐸 ‘ ( 𝑖 + 1 ) ) ∈ 𝑆 )
188 simpll ( ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ) → 𝜑 )
189 92 adantr ( ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ) → 𝑀 ∈ ℤ )
190 elfzelz ( 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) → 𝑗 ∈ ℤ )
191 190 adantl ( ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ) → 𝑗 ∈ ℤ )
192 elfzle1 ( 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) → 𝑀𝑗 )
193 192 adantl ( ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ) → 𝑀𝑗 )
194 189 191 193 3jca ( ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ) → ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑀𝑗 ) )
195 eluz2 ( 𝑗 ∈ ( ℤ𝑀 ) ↔ ( 𝑀 ∈ ℤ ∧ 𝑗 ∈ ℤ ∧ 𝑀𝑗 ) )
196 194 195 sylibr ( ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ) → 𝑗 ∈ ( ℤ𝑀 ) )
197 196 128 eleqtrdi ( ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ∧ 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ) → 𝑗𝑍 )
198 197 adantll ( ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ) → 𝑗𝑍 )
199 1 43 syl ( 𝜑𝑆 ⊆ dom 𝑂 )
200 199 adantr ( ( 𝜑𝑗𝑍 ) → 𝑆 ⊆ dom 𝑂 )
201 4 ffvelrnda ( ( 𝜑𝑗𝑍 ) → ( 𝐸𝑗 ) ∈ 𝑆 )
202 200 201 sseldd ( ( 𝜑𝑗𝑍 ) → ( 𝐸𝑗 ) ∈ dom 𝑂 )
203 elssuni ( ( 𝐸𝑗 ) ∈ dom 𝑂 → ( 𝐸𝑗 ) ⊆ dom 𝑂 )
204 202 203 syl ( ( 𝜑𝑗𝑍 ) → ( 𝐸𝑗 ) ⊆ dom 𝑂 )
205 188 198 204 syl2anc ( ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ) → ( 𝐸𝑗 ) ⊆ dom 𝑂 )
206 205 ralrimiva ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ∀ 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ( 𝐸𝑗 ) ⊆ dom 𝑂 )
207 iunss ( 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ( 𝐸𝑗 ) ⊆ dom 𝑂 ↔ ∀ 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ( 𝐸𝑗 ) ⊆ dom 𝑂 )
208 206 207 sylibr ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → 𝑗 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ( 𝐸𝑗 ) ⊆ dom 𝑂 )
209 134 208 eqsstrd ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐺 ‘ ( 𝑖 + 1 ) ) ⊆ dom 𝑂 )
210 185 2 42 187 209 caragensplit ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖 + 1 ) ) ∩ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖 + 1 ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) ) = ( 𝑂 ‘ ( 𝐺 ‘ ( 𝑖 + 1 ) ) ) )
211 210 eqcomd ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑂 ‘ ( 𝐺 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖 + 1 ) ) ∩ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖 + 1 ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) ) )
212 211 3adant3 ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( 𝑂 ‘ ( 𝐺𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ) → ( 𝑂 ‘ ( 𝐺 ‘ ( 𝑖 + 1 ) ) ) = ( ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖 + 1 ) ) ∩ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) +𝑒 ( 𝑂 ‘ ( ( 𝐺 ‘ ( 𝑖 + 1 ) ) ∖ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) ) )
213 185 adantr ( ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ) → 𝑂 ∈ OutMeas )
214 162 adantr ( ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ) → 𝜑 )
215 elfzuz ( 𝑛 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) → 𝑛 ∈ ( ℤ𝑀 ) )
216 215 128 eleqtrdi ( 𝑛 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) → 𝑛𝑍 )
217 216 adantl ( ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ) → 𝑛𝑍 )
218 4 199 fssd ( 𝜑𝐸 : 𝑍 ⟶ dom 𝑂 )
219 218 ffvelrnda ( ( 𝜑𝑛𝑍 ) → ( 𝐸𝑛 ) ∈ dom 𝑂 )
220 219 55 syl ( ( 𝜑𝑛𝑍 ) → ( 𝐸𝑛 ) ⊆ dom 𝑂 )
221 214 217 220 syl2anc ( ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ) → ( 𝐸𝑛 ) ⊆ dom 𝑂 )
222 213 42 221 omecl ( ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) ∧ 𝑛 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ) → ( 𝑂 ‘ ( 𝐸𝑛 ) ) ∈ ( 0 [,] +∞ ) )
223 2fveq3 ( 𝑛 = ( 𝑖 + 1 ) → ( 𝑂 ‘ ( 𝐸𝑛 ) ) = ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) )
224 143 222 223 sge0p1 ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) = ( ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) )
225 224 3adant3 ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( 𝑂 ‘ ( 𝐺𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ) → ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) = ( ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) )
226 id ( ( 𝑂 ‘ ( 𝐺𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) → ( 𝑂 ‘ ( 𝐺𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) )
227 226 eqcomd ( ( 𝑂 ‘ ( 𝐺𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) → ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) = ( 𝑂 ‘ ( 𝐺𝑖 ) ) )
228 227 oveq1d ( ( 𝑂 ‘ ( 𝐺𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) → ( ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑂 ‘ ( 𝐺𝑖 ) ) +𝑒 ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) )
229 228 3ad2ant3 ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( 𝑂 ‘ ( 𝐺𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ) → ( ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑂 ‘ ( 𝐺𝑖 ) ) +𝑒 ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) )
230 simpl ( ( 𝜑𝑗 ∈ ( 𝑀 ... 𝑖 ) ) → 𝜑 )
231 152 sseli ( 𝑗 ∈ ( 𝑀 ... 𝑖 ) → 𝑗𝑍 )
232 231 adantl ( ( 𝜑𝑗 ∈ ( 𝑀 ... 𝑖 ) ) → 𝑗𝑍 )
233 230 232 204 syl2anc ( ( 𝜑𝑗 ∈ ( 𝑀 ... 𝑖 ) ) → ( 𝐸𝑗 ) ⊆ dom 𝑂 )
234 233 adantlr ( ( ( 𝜑𝑖𝑍 ) ∧ 𝑗 ∈ ( 𝑀 ... 𝑖 ) ) → ( 𝐸𝑗 ) ⊆ dom 𝑂 )
235 234 ralrimiva ( ( 𝜑𝑖𝑍 ) → ∀ 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸𝑗 ) ⊆ dom 𝑂 )
236 iunss ( 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸𝑗 ) ⊆ dom 𝑂 ↔ ∀ 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸𝑗 ) ⊆ dom 𝑂 )
237 235 236 sylibr ( ( 𝜑𝑖𝑍 ) → 𝑗 ∈ ( 𝑀 ... 𝑖 ) ( 𝐸𝑗 ) ⊆ dom 𝑂 )
238 172 237 eqsstrd ( ( 𝜑𝑖𝑍 ) → ( 𝐺𝑖 ) ⊆ dom 𝑂 )
239 162 163 238 syl2anc ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐺𝑖 ) ⊆ dom 𝑂 )
240 185 42 239 omexrcl ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑂 ‘ ( 𝐺𝑖 ) ) ∈ ℝ* )
241 108 208 sstrd ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝐸 ‘ ( 𝑖 + 1 ) ) ⊆ dom 𝑂 )
242 185 42 241 omexrcl ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ∈ ℝ* )
243 240 242 xaddcomd ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ) → ( ( 𝑂 ‘ ( 𝐺𝑖 ) ) +𝑒 ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐺𝑖 ) ) ) )
244 243 3adant3 ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( 𝑂 ‘ ( 𝐺𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ) → ( ( 𝑂 ‘ ( 𝐺𝑖 ) ) +𝑒 ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) ) = ( ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐺𝑖 ) ) ) )
245 225 229 244 3eqtrd ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( 𝑂 ‘ ( 𝐺𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ) → ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) = ( ( 𝑂 ‘ ( 𝐸 ‘ ( 𝑖 + 1 ) ) ) +𝑒 ( 𝑂 ‘ ( 𝐺𝑖 ) ) ) )
246 184 212 245 3eqtr4d ( ( 𝜑𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( 𝑂 ‘ ( 𝐺𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ) → ( 𝑂 ‘ ( 𝐺 ‘ ( 𝑖 + 1 ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) )
247 87 88 91 246 syl3anc ( ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) ∧ ( 𝜑 → ( 𝑂 ‘ ( 𝐺𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ) ∧ 𝜑 ) → ( 𝑂 ‘ ( 𝐺 ‘ ( 𝑖 + 1 ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) )
248 247 3exp ( 𝑖 ∈ ( 𝑀 ..^ 𝑁 ) → ( ( 𝜑 → ( 𝑂 ‘ ( 𝐺𝑖 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑖 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ) → ( 𝜑 → ( 𝑂 ‘ ( 𝐺 ‘ ( 𝑖 + 1 ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... ( 𝑖 + 1 ) ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ) ) )
249 16 22 28 34 86 248 fzind2 ( 𝑁 ∈ ( 𝑀 ... 𝑁 ) → ( 𝜑 → ( 𝑂 ‘ ( 𝐺𝑁 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) ) )
250 9 10 249 sylc ( 𝜑 → ( 𝑂 ‘ ( 𝐺𝑁 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( 𝑀 ... 𝑁 ) ↦ ( 𝑂 ‘ ( 𝐸𝑛 ) ) ) ) )