Metamath Proof Explorer


Theorem caratheodorylem1

Description: Lemma used to prove that Caratheodory's construction is sigma-additive. This is the proof of the statement in the middle of Step (e) in the proof of Theorem 113C of Fremlin1 p. 21. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses caratheodorylem1.o φOOutMeas
caratheodorylem1.s S=CaraGenO
caratheodorylem1.z Z=M
caratheodorylem1.e φE:ZS
caratheodorylem1.dj φDisjnZEn
caratheodorylem1.g G=nZi=MnEi
caratheodorylem1.n φNM
Assertion caratheodorylem1 φOGN=sum^nMNOEn

Proof

Step Hyp Ref Expression
1 caratheodorylem1.o φOOutMeas
2 caratheodorylem1.s S=CaraGenO
3 caratheodorylem1.z Z=M
4 caratheodorylem1.e φE:ZS
5 caratheodorylem1.dj φDisjnZEn
6 caratheodorylem1.g G=nZi=MnEi
7 caratheodorylem1.n φNM
8 eluzfz2 NMNMN
9 7 8 syl φNMN
10 id φφ
11 2fveq3 j=MOGj=OGM
12 oveq2 j=MMj=MM
13 12 mpteq1d j=MnMjOEn=nMMOEn
14 13 fveq2d j=Msum^nMjOEn=sum^nMMOEn
15 11 14 eqeq12d j=MOGj=sum^nMjOEnOGM=sum^nMMOEn
16 15 imbi2d j=MφOGj=sum^nMjOEnφOGM=sum^nMMOEn
17 2fveq3 j=iOGj=OGi
18 oveq2 j=iMj=Mi
19 18 mpteq1d j=inMjOEn=nMiOEn
20 19 fveq2d j=isum^nMjOEn=sum^nMiOEn
21 17 20 eqeq12d j=iOGj=sum^nMjOEnOGi=sum^nMiOEn
22 21 imbi2d j=iφOGj=sum^nMjOEnφOGi=sum^nMiOEn
23 2fveq3 j=i+1OGj=OGi+1
24 oveq2 j=i+1Mj=Mi+1
25 24 mpteq1d j=i+1nMjOEn=nMi+1OEn
26 25 fveq2d j=i+1sum^nMjOEn=sum^nMi+1OEn
27 23 26 eqeq12d j=i+1OGj=sum^nMjOEnOGi+1=sum^nMi+1OEn
28 27 imbi2d j=i+1φOGj=sum^nMjOEnφOGi+1=sum^nMi+1OEn
29 2fveq3 j=NOGj=OGN
30 oveq2 j=NMj=MN
31 30 mpteq1d j=NnMjOEn=nMNOEn
32 31 fveq2d j=Nsum^nMjOEn=sum^nMNOEn
33 29 32 eqeq12d j=NOGj=sum^nMjOEnOGN=sum^nMNOEn
34 33 imbi2d j=NφOGj=sum^nMjOEnφOGN=sum^nMNOEn
35 eluzel2 NMM
36 7 35 syl φM
37 fzsn MMM=M
38 36 37 syl φMM=M
39 38 mpteq1d φnMMOEn=nMOEn
40 39 fveq2d φsum^nMMOEn=sum^nMOEn
41 1 adantr φnMOOutMeas
42 eqid domO=domO
43 2 caragenss OOutMeasSdomO
44 41 43 syl φnMSdomO
45 4 adantr φnME:ZS
46 elsni nMn=M
47 46 adantl φnMn=M
48 uzid MMM
49 36 48 syl φMM
50 49 3 eleqtrrdi φMZ
51 50 adantr φnMMZ
52 47 51 eqeltrd φnMnZ
53 45 52 ffvelcdmd φnMEnS
54 44 53 sseldd φnMEndomO
55 elssuni EndomOEndomO
56 54 55 syl φnMEndomO
57 41 42 56 omecl φnMOEn0+∞
58 eqid nMOEn=nMOEn
59 57 58 fmptd φnMOEn:M0+∞
60 36 59 sge0sn φsum^nMOEn=nMOEnM
61 eqidd φnMOEn=nMOEn
62 38 iuneq1d φi=MMEi=iMEi
63 fveq2 i=MEi=EM
64 63 iunxsng MZiMEi=EM
65 50 64 syl φiMEi=EM
66 eqidd φEM=EM
67 62 65 66 3eqtrrd φEM=i=MMEi
68 67 adantr φn=MEM=i=MMEi
69 fveq2 n=MEn=EM
70 69 adantl φn=MEn=EM
71 oveq2 n=MMn=MM
72 71 iuneq1d n=Mi=MnEi=i=MMEi
73 ovex MMV
74 fvex EiV
75 73 74 iunex i=MMEiV
76 75 a1i φi=MMEiV
77 6 72 50 76 fvmptd3 φGM=i=MMEi
78 77 adantr φn=MGM=i=MMEi
79 68 70 78 3eqtr4d φn=MEn=GM
80 79 fveq2d φn=MOEn=OGM
81 snidg MZMM
82 50 81 syl φMM
83 fvexd φOGMV
84 61 80 82 83 fvmptd φnMOEnM=OGM
85 40 60 84 3eqtrrd φOGM=sum^nMMOEn
86 85 a1i NMφOGM=sum^nMMOEn
87 simp3 iM..^NφOGi=sum^nMiOEnφφ
88 simp1 iM..^NφOGi=sum^nMiOEnφiM..^N
89 id φOGi=sum^nMiOEnφOGi=sum^nMiOEn
90 89 imp φOGi=sum^nMiOEnφOGi=sum^nMiOEn
91 90 3adant1 iM..^NφOGi=sum^nMiOEnφOGi=sum^nMiOEn
92 elfzoel1 iM..^NM
93 elfzoelz iM..^Ni
94 93 peano2zd iM..^Ni+1
95 92 zred iM..^NM
96 94 zred iM..^Ni+1
97 93 zred iM..^Ni
98 elfzole1 iM..^NMi
99 97 ltp1d iM..^Ni<i+1
100 95 97 96 98 99 lelttrd iM..^NM<i+1
101 95 96 100 ltled iM..^NMi+1
102 leid i+1i+1i+1
103 96 102 syl iM..^Ni+1i+1
104 92 94 94 101 103 elfzd iM..^Ni+1Mi+1
105 104 adantl φiM..^Ni+1Mi+1
106 fveq2 j=i+1Ej=Ei+1
107 106 ssiun2s i+1Mi+1Ei+1j=Mi+1Ej
108 105 107 syl φiM..^NEi+1j=Mi+1Ej
109 fveq2 i=jEi=Ej
110 109 cbviunv i=MnEi=j=MnEj
111 110 mpteq2i nZi=MnEi=nZj=MnEj
112 6 111 eqtri G=nZj=MnEj
113 oveq2 n=i+1Mn=Mi+1
114 113 iuneq1d n=i+1j=MnEj=j=Mi+1Ej
115 36 adantr φiM..^NM
116 93 adantl φiM..^Ni
117 116 peano2zd φiM..^Ni+1
118 115 zred φiM..^NM
119 117 zred φiM..^Ni+1
120 116 zred φiM..^Ni
121 98 adantl φiM..^NMi
122 120 ltp1d φiM..^Ni<i+1
123 118 120 119 121 122 lelttrd φiM..^NM<i+1
124 118 119 123 ltled φiM..^NMi+1
125 115 117 124 3jca φiM..^NMi+1Mi+1
126 eluz2 i+1MMi+1Mi+1
127 125 126 sylibr φiM..^Ni+1M
128 3 eqcomi M=Z
129 127 128 eleqtrdi φiM..^Ni+1Z
130 ovex Mi+1V
131 fvex EjV
132 130 131 iunex j=Mi+1EjV
133 132 a1i φiM..^Nj=Mi+1EjV
134 112 114 129 133 fvmptd3 φiM..^NGi+1=j=Mi+1Ej
135 134 eqcomd φiM..^Nj=Mi+1Ej=Gi+1
136 108 135 sseqtrd φiM..^NEi+1Gi+1
137 sseqin2 Ei+1Gi+1Gi+1Ei+1=Ei+1
138 137 biimpi Ei+1Gi+1Gi+1Ei+1=Ei+1
139 136 138 syl φiM..^NGi+1Ei+1=Ei+1
140 139 fveq2d φiM..^NOGi+1Ei+1=OEi+1
141 nfcv _jEi+1
142 elfzouz iM..^NiM
143 142 adantl φiM..^NiM
144 141 143 106 iunp1 φiM..^Nj=Mi+1Ej=j=MiEjEi+1
145 134 144 eqtrd φiM..^NGi+1=j=MiEjEi+1
146 145 difeq1d φiM..^NGi+1Ei+1=j=MiEjEi+1Ei+1
147 fveq2 n=jEn=Ej
148 147 cbvdisjv DisjnZEnDisjjZEj
149 5 148 sylib φDisjjZEj
150 149 adantr φiM..^NDisjjZEj
151 fzssuz MiM
152 151 128 sseqtri MiZ
153 152 a1i φiM..^NMiZ
154 fzp1nel ¬i+1Mi
155 154 a1i iM..^N¬i+1Mi
156 155 adantl φiM..^N¬i+1Mi
157 129 156 eldifd φiM..^Ni+1ZMi
158 150 153 157 106 disjiun2 φiM..^Nj=MiEjEi+1=
159 undif4 j=MiEjEi+1=j=MiEjEi+1Ei+1=j=MiEjEi+1Ei+1
160 158 159 syl φiM..^Nj=MiEjEi+1Ei+1=j=MiEjEi+1Ei+1
161 160 eqcomd φiM..^Nj=MiEjEi+1Ei+1=j=MiEjEi+1Ei+1
162 simpl φiM..^Nφ
163 143 128 eleqtrdi φiM..^NiZ
164 112 a1i φiZG=nZj=MnEj
165 simpr φiZn=in=i
166 165 oveq2d φiZn=iMn=Mi
167 166 iuneq1d φiZn=ij=MnEj=j=MiEj
168 simpr φiZiZ
169 ovex MiV
170 169 131 iunex j=MiEjV
171 170 a1i φiZj=MiEjV
172 164 167 168 171 fvmptd φiZGi=j=MiEj
173 162 163 172 syl2anc φiM..^NGi=j=MiEj
174 173 eqcomd φiM..^Nj=MiEj=Gi
175 difid Ei+1Ei+1=
176 175 a1i φiM..^NEi+1Ei+1=
177 174 176 uneq12d φiM..^Nj=MiEjEi+1Ei+1=Gi
178 un0 Gi=Gi
179 178 a1i φiM..^NGi=Gi
180 177 179 eqtrd φiM..^Nj=MiEjEi+1Ei+1=Gi
181 146 161 180 3eqtrd φiM..^NGi+1Ei+1=Gi
182 181 fveq2d φiM..^NOGi+1Ei+1=OGi
183 140 182 oveq12d φiM..^NOGi+1Ei+1+𝑒OGi+1Ei+1=OEi+1+𝑒OGi
184 183 3adant3 φiM..^NOGi=sum^nMiOEnOGi+1Ei+1+𝑒OGi+1Ei+1=OEi+1+𝑒OGi
185 1 adantr φiM..^NOOutMeas
186 4 adantr φiM..^NE:ZS
187 186 129 ffvelcdmd φiM..^NEi+1S
188 simpll φiM..^NjMi+1φ
189 92 adantr iM..^NjMi+1M
190 elfzelz jMi+1j
191 190 adantl iM..^NjMi+1j
192 elfzle1 jMi+1Mj
193 192 adantl iM..^NjMi+1Mj
194 189 191 193 3jca iM..^NjMi+1MjMj
195 eluz2 jMMjMj
196 194 195 sylibr iM..^NjMi+1jM
197 196 128 eleqtrdi iM..^NjMi+1jZ
198 197 adantll φiM..^NjMi+1jZ
199 1 43 syl φSdomO
200 199 adantr φjZSdomO
201 4 ffvelcdmda φjZEjS
202 200 201 sseldd φjZEjdomO
203 elssuni EjdomOEjdomO
204 202 203 syl φjZEjdomO
205 188 198 204 syl2anc φiM..^NjMi+1EjdomO
206 205 ralrimiva φiM..^NjMi+1EjdomO
207 iunss j=Mi+1EjdomOjMi+1EjdomO
208 206 207 sylibr φiM..^Nj=Mi+1EjdomO
209 134 208 eqsstrd φiM..^NGi+1domO
210 185 2 42 187 209 caragensplit φiM..^NOGi+1Ei+1+𝑒OGi+1Ei+1=OGi+1
211 210 eqcomd φiM..^NOGi+1=OGi+1Ei+1+𝑒OGi+1Ei+1
212 211 3adant3 φiM..^NOGi=sum^nMiOEnOGi+1=OGi+1Ei+1+𝑒OGi+1Ei+1
213 185 adantr φiM..^NnMi+1OOutMeas
214 162 adantr φiM..^NnMi+1φ
215 elfzuz nMi+1nM
216 215 128 eleqtrdi nMi+1nZ
217 216 adantl φiM..^NnMi+1nZ
218 4 199 fssd φE:ZdomO
219 218 ffvelcdmda φnZEndomO
220 219 55 syl φnZEndomO
221 214 217 220 syl2anc φiM..^NnMi+1EndomO
222 213 42 221 omecl φiM..^NnMi+1OEn0+∞
223 2fveq3 n=i+1OEn=OEi+1
224 143 222 223 sge0p1 φiM..^Nsum^nMi+1OEn=sum^nMiOEn+𝑒OEi+1
225 224 3adant3 φiM..^NOGi=sum^nMiOEnsum^nMi+1OEn=sum^nMiOEn+𝑒OEi+1
226 id OGi=sum^nMiOEnOGi=sum^nMiOEn
227 226 eqcomd OGi=sum^nMiOEnsum^nMiOEn=OGi
228 227 oveq1d OGi=sum^nMiOEnsum^nMiOEn+𝑒OEi+1=OGi+𝑒OEi+1
229 228 3ad2ant3 φiM..^NOGi=sum^nMiOEnsum^nMiOEn+𝑒OEi+1=OGi+𝑒OEi+1
230 simpl φjMiφ
231 152 sseli jMijZ
232 231 adantl φjMijZ
233 230 232 204 syl2anc φjMiEjdomO
234 233 adantlr φiZjMiEjdomO
235 234 ralrimiva φiZjMiEjdomO
236 iunss j=MiEjdomOjMiEjdomO
237 235 236 sylibr φiZj=MiEjdomO
238 172 237 eqsstrd φiZGidomO
239 162 163 238 syl2anc φiM..^NGidomO
240 185 42 239 omexrcl φiM..^NOGi*
241 108 208 sstrd φiM..^NEi+1domO
242 185 42 241 omexrcl φiM..^NOEi+1*
243 240 242 xaddcomd φiM..^NOGi+𝑒OEi+1=OEi+1+𝑒OGi
244 243 3adant3 φiM..^NOGi=sum^nMiOEnOGi+𝑒OEi+1=OEi+1+𝑒OGi
245 225 229 244 3eqtrd φiM..^NOGi=sum^nMiOEnsum^nMi+1OEn=OEi+1+𝑒OGi
246 184 212 245 3eqtr4d φiM..^NOGi=sum^nMiOEnOGi+1=sum^nMi+1OEn
247 87 88 91 246 syl3anc iM..^NφOGi=sum^nMiOEnφOGi+1=sum^nMi+1OEn
248 247 3exp iM..^NφOGi=sum^nMiOEnφOGi+1=sum^nMi+1OEn
249 16 22 28 34 86 248 fzind2 NMNφOGN=sum^nMNOEn
250 9 10 249 sylc φOGN=sum^nMNOEn