Metamath Proof Explorer


Theorem caratheodorylem1

Description: Lemma used to prove that Caratheodory's construction is sigma-additive. This is the proof of the statement in the middle of Step (e) in the proof of Theorem 113C of Fremlin1 p. 21. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses caratheodorylem1.o φ O OutMeas
caratheodorylem1.s S = CaraGen O
caratheodorylem1.z Z = M
caratheodorylem1.e φ E : Z S
caratheodorylem1.dj φ Disj n Z E n
caratheodorylem1.g G = n Z i = M n E i
caratheodorylem1.n φ N M
Assertion caratheodorylem1 φ O G N = sum^ n M N O E n

Proof

Step Hyp Ref Expression
1 caratheodorylem1.o φ O OutMeas
2 caratheodorylem1.s S = CaraGen O
3 caratheodorylem1.z Z = M
4 caratheodorylem1.e φ E : Z S
5 caratheodorylem1.dj φ Disj n Z E n
6 caratheodorylem1.g G = n Z i = M n E i
7 caratheodorylem1.n φ N M
8 eluzfz2 N M N M N
9 7 8 syl φ N M N
10 id φ φ
11 2fveq3 j = M O G j = O G M
12 oveq2 j = M M j = M M
13 12 mpteq1d j = M n M j O E n = n M M O E n
14 13 fveq2d j = M sum^ n M j O E n = sum^ n M M O E n
15 11 14 eqeq12d j = M O G j = sum^ n M j O E n O G M = sum^ n M M O E n
16 15 imbi2d j = M φ O G j = sum^ n M j O E n φ O G M = sum^ n M M O E n
17 2fveq3 j = i O G j = O G i
18 oveq2 j = i M j = M i
19 18 mpteq1d j = i n M j O E n = n M i O E n
20 19 fveq2d j = i sum^ n M j O E n = sum^ n M i O E n
21 17 20 eqeq12d j = i O G j = sum^ n M j O E n O G i = sum^ n M i O E n
22 21 imbi2d j = i φ O G j = sum^ n M j O E n φ O G i = sum^ n M i O E n
23 2fveq3 j = i + 1 O G j = O G i + 1
24 oveq2 j = i + 1 M j = M i + 1
25 24 mpteq1d j = i + 1 n M j O E n = n M i + 1 O E n
26 25 fveq2d j = i + 1 sum^ n M j O E n = sum^ n M i + 1 O E n
27 23 26 eqeq12d j = i + 1 O G j = sum^ n M j O E n O G i + 1 = sum^ n M i + 1 O E n
28 27 imbi2d j = i + 1 φ O G j = sum^ n M j O E n φ O G i + 1 = sum^ n M i + 1 O E n
29 2fveq3 j = N O G j = O G N
30 oveq2 j = N M j = M N
31 30 mpteq1d j = N n M j O E n = n M N O E n
32 31 fveq2d j = N sum^ n M j O E n = sum^ n M N O E n
33 29 32 eqeq12d j = N O G j = sum^ n M j O E n O G N = sum^ n M N O E n
34 33 imbi2d j = N φ O G j = sum^ n M j O E n φ O G N = sum^ n M N O E n
35 eluzel2 N M M
36 7 35 syl φ M
37 fzsn M M M = M
38 36 37 syl φ M M = M
39 38 mpteq1d φ n M M O E n = n M O E n
40 39 fveq2d φ sum^ n M M O E n = sum^ n M O E n
41 1 adantr φ n M O OutMeas
42 eqid dom O = dom O
43 2 caragenss O OutMeas S dom O
44 41 43 syl φ n M S dom O
45 4 adantr φ n M E : Z S
46 elsni n M n = M
47 46 adantl φ n M n = M
48 uzid M M M
49 36 48 syl φ M M
50 49 3 eleqtrrdi φ M Z
51 50 adantr φ n M M Z
52 47 51 eqeltrd φ n M n Z
53 45 52 ffvelrnd φ n M E n S
54 44 53 sseldd φ n M E n dom O
55 elssuni E n dom O E n dom O
56 54 55 syl φ n M E n dom O
57 41 42 56 omecl φ n M O E n 0 +∞
58 eqid n M O E n = n M O E n
59 57 58 fmptd φ n M O E n : M 0 +∞
60 36 59 sge0sn φ sum^ n M O E n = n M O E n M
61 eqidd φ n M O E n = n M O E n
62 38 iuneq1d φ i = M M E i = i M E i
63 fveq2 i = M E i = E M
64 63 iunxsng M Z i M E i = E M
65 50 64 syl φ i M E i = E M
66 eqidd φ E M = E M
67 62 65 66 3eqtrrd φ E M = i = M M E i
68 67 adantr φ n = M E M = i = M M E i
69 fveq2 n = M E n = E M
70 69 adantl φ n = M E n = E M
71 oveq2 n = M M n = M M
72 71 iuneq1d n = M i = M n E i = i = M M E i
73 ovex M M V
74 fvex E i V
75 73 74 iunex i = M M E i V
76 75 a1i φ i = M M E i V
77 6 72 50 76 fvmptd3 φ G M = i = M M E i
78 77 adantr φ n = M G M = i = M M E i
79 68 70 78 3eqtr4d φ n = M E n = G M
80 79 fveq2d φ n = M O E n = O G M
81 snidg M Z M M
82 50 81 syl φ M M
83 fvexd φ O G M V
84 61 80 82 83 fvmptd φ n M O E n M = O G M
85 40 60 84 3eqtrrd φ O G M = sum^ n M M O E n
86 85 a1i N M φ O G M = sum^ n M M O E n
87 simp3 i M ..^ N φ O G i = sum^ n M i O E n φ φ
88 simp1 i M ..^ N φ O G i = sum^ n M i O E n φ i M ..^ N
89 id φ O G i = sum^ n M i O E n φ O G i = sum^ n M i O E n
90 89 imp φ O G i = sum^ n M i O E n φ O G i = sum^ n M i O E n
91 90 3adant1 i M ..^ N φ O G i = sum^ n M i O E n φ O G i = sum^ n M i O E n
92 elfzoel1 i M ..^ N M
93 elfzoelz i M ..^ N i
94 93 peano2zd i M ..^ N i + 1
95 92 zred i M ..^ N M
96 94 zred i M ..^ N i + 1
97 93 zred i M ..^ N i
98 elfzole1 i M ..^ N M i
99 97 ltp1d i M ..^ N i < i + 1
100 95 97 96 98 99 lelttrd i M ..^ N M < i + 1
101 95 96 100 ltled i M ..^ N M i + 1
102 leid i + 1 i + 1 i + 1
103 96 102 syl i M ..^ N i + 1 i + 1
104 92 94 94 101 103 elfzd i M ..^ N i + 1 M i + 1
105 104 adantl φ i M ..^ N i + 1 M i + 1
106 fveq2 j = i + 1 E j = E i + 1
107 106 ssiun2s i + 1 M i + 1 E i + 1 j = M i + 1 E j
108 105 107 syl φ i M ..^ N E i + 1 j = M i + 1 E j
109 fveq2 i = j E i = E j
110 109 cbviunv i = M n E i = j = M n E j
111 110 mpteq2i n Z i = M n E i = n Z j = M n E j
112 6 111 eqtri G = n Z j = M n E j
113 oveq2 n = i + 1 M n = M i + 1
114 113 iuneq1d n = i + 1 j = M n E j = j = M i + 1 E j
115 36 adantr φ i M ..^ N M
116 93 adantl φ i M ..^ N i
117 116 peano2zd φ i M ..^ N i + 1
118 115 zred φ i M ..^ N M
119 117 zred φ i M ..^ N i + 1
120 116 zred φ i M ..^ N i
121 98 adantl φ i M ..^ N M i
122 120 ltp1d φ i M ..^ N i < i + 1
123 118 120 119 121 122 lelttrd φ i M ..^ N M < i + 1
124 118 119 123 ltled φ i M ..^ N M i + 1
125 115 117 124 3jca φ i M ..^ N M i + 1 M i + 1
126 eluz2 i + 1 M M i + 1 M i + 1
127 125 126 sylibr φ i M ..^ N i + 1 M
128 3 eqcomi M = Z
129 127 128 eleqtrdi φ i M ..^ N i + 1 Z
130 ovex M i + 1 V
131 fvex E j V
132 130 131 iunex j = M i + 1 E j V
133 132 a1i φ i M ..^ N j = M i + 1 E j V
134 112 114 129 133 fvmptd3 φ i M ..^ N G i + 1 = j = M i + 1 E j
135 134 eqcomd φ i M ..^ N j = M i + 1 E j = G i + 1
136 108 135 sseqtrd φ i M ..^ N E i + 1 G i + 1
137 sseqin2 E i + 1 G i + 1 G i + 1 E i + 1 = E i + 1
138 137 biimpi E i + 1 G i + 1 G i + 1 E i + 1 = E i + 1
139 136 138 syl φ i M ..^ N G i + 1 E i + 1 = E i + 1
140 139 fveq2d φ i M ..^ N O G i + 1 E i + 1 = O E i + 1
141 nfcv _ j E i + 1
142 elfzouz i M ..^ N i M
143 142 adantl φ i M ..^ N i M
144 141 143 106 iunp1 φ i M ..^ N j = M i + 1 E j = j = M i E j E i + 1
145 134 144 eqtrd φ i M ..^ N G i + 1 = j = M i E j E i + 1
146 145 difeq1d φ i M ..^ N G i + 1 E i + 1 = j = M i E j E i + 1 E i + 1
147 fveq2 n = j E n = E j
148 147 cbvdisjv Disj n Z E n Disj j Z E j
149 5 148 sylib φ Disj j Z E j
150 149 adantr φ i M ..^ N Disj j Z E j
151 fzssuz M i M
152 151 128 sseqtri M i Z
153 152 a1i φ i M ..^ N M i Z
154 fzp1nel ¬ i + 1 M i
155 154 a1i i M ..^ N ¬ i + 1 M i
156 155 adantl φ i M ..^ N ¬ i + 1 M i
157 129 156 eldifd φ i M ..^ N i + 1 Z M i
158 150 153 157 106 disjiun2 φ i M ..^ N j = M i E j E i + 1 =
159 undif4 j = M i E j E i + 1 = j = M i E j E i + 1 E i + 1 = j = M i E j E i + 1 E i + 1
160 158 159 syl φ i M ..^ N j = M i E j E i + 1 E i + 1 = j = M i E j E i + 1 E i + 1
161 160 eqcomd φ i M ..^ N j = M i E j E i + 1 E i + 1 = j = M i E j E i + 1 E i + 1
162 simpl φ i M ..^ N φ
163 143 128 eleqtrdi φ i M ..^ N i Z
164 112 a1i φ i Z G = n Z j = M n E j
165 simpr φ i Z n = i n = i
166 165 oveq2d φ i Z n = i M n = M i
167 166 iuneq1d φ i Z n = i j = M n E j = j = M i E j
168 simpr φ i Z i Z
169 ovex M i V
170 169 131 iunex j = M i E j V
171 170 a1i φ i Z j = M i E j V
172 164 167 168 171 fvmptd φ i Z G i = j = M i E j
173 162 163 172 syl2anc φ i M ..^ N G i = j = M i E j
174 173 eqcomd φ i M ..^ N j = M i E j = G i
175 difid E i + 1 E i + 1 =
176 175 a1i φ i M ..^ N E i + 1 E i + 1 =
177 174 176 uneq12d φ i M ..^ N j = M i E j E i + 1 E i + 1 = G i
178 un0 G i = G i
179 178 a1i φ i M ..^ N G i = G i
180 177 179 eqtrd φ i M ..^ N j = M i E j E i + 1 E i + 1 = G i
181 146 161 180 3eqtrd φ i M ..^ N G i + 1 E i + 1 = G i
182 181 fveq2d φ i M ..^ N O G i + 1 E i + 1 = O G i
183 140 182 oveq12d φ i M ..^ N O G i + 1 E i + 1 + 𝑒 O G i + 1 E i + 1 = O E i + 1 + 𝑒 O G i
184 183 3adant3 φ i M ..^ N O G i = sum^ n M i O E n O G i + 1 E i + 1 + 𝑒 O G i + 1 E i + 1 = O E i + 1 + 𝑒 O G i
185 1 adantr φ i M ..^ N O OutMeas
186 4 adantr φ i M ..^ N E : Z S
187 186 129 ffvelrnd φ i M ..^ N E i + 1 S
188 simpll φ i M ..^ N j M i + 1 φ
189 92 adantr i M ..^ N j M i + 1 M
190 elfzelz j M i + 1 j
191 190 adantl i M ..^ N j M i + 1 j
192 elfzle1 j M i + 1 M j
193 192 adantl i M ..^ N j M i + 1 M j
194 189 191 193 3jca i M ..^ N j M i + 1 M j M j
195 eluz2 j M M j M j
196 194 195 sylibr i M ..^ N j M i + 1 j M
197 196 128 eleqtrdi i M ..^ N j M i + 1 j Z
198 197 adantll φ i M ..^ N j M i + 1 j Z
199 1 43 syl φ S dom O
200 199 adantr φ j Z S dom O
201 4 ffvelrnda φ j Z E j S
202 200 201 sseldd φ j Z E j dom O
203 elssuni E j dom O E j dom O
204 202 203 syl φ j Z E j dom O
205 188 198 204 syl2anc φ i M ..^ N j M i + 1 E j dom O
206 205 ralrimiva φ i M ..^ N j M i + 1 E j dom O
207 iunss j = M i + 1 E j dom O j M i + 1 E j dom O
208 206 207 sylibr φ i M ..^ N j = M i + 1 E j dom O
209 134 208 eqsstrd φ i M ..^ N G i + 1 dom O
210 185 2 42 187 209 caragensplit φ i M ..^ N O G i + 1 E i + 1 + 𝑒 O G i + 1 E i + 1 = O G i + 1
211 210 eqcomd φ i M ..^ N O G i + 1 = O G i + 1 E i + 1 + 𝑒 O G i + 1 E i + 1
212 211 3adant3 φ i M ..^ N O G i = sum^ n M i O E n O G i + 1 = O G i + 1 E i + 1 + 𝑒 O G i + 1 E i + 1
213 185 adantr φ i M ..^ N n M i + 1 O OutMeas
214 162 adantr φ i M ..^ N n M i + 1 φ
215 elfzuz n M i + 1 n M
216 215 128 eleqtrdi n M i + 1 n Z
217 216 adantl φ i M ..^ N n M i + 1 n Z
218 4 199 fssd φ E : Z dom O
219 218 ffvelrnda φ n Z E n dom O
220 219 55 syl φ n Z E n dom O
221 214 217 220 syl2anc φ i M ..^ N n M i + 1 E n dom O
222 213 42 221 omecl φ i M ..^ N n M i + 1 O E n 0 +∞
223 2fveq3 n = i + 1 O E n = O E i + 1
224 143 222 223 sge0p1 φ i M ..^ N sum^ n M i + 1 O E n = sum^ n M i O E n + 𝑒 O E i + 1
225 224 3adant3 φ i M ..^ N O G i = sum^ n M i O E n sum^ n M i + 1 O E n = sum^ n M i O E n + 𝑒 O E i + 1
226 id O G i = sum^ n M i O E n O G i = sum^ n M i O E n
227 226 eqcomd O G i = sum^ n M i O E n sum^ n M i O E n = O G i
228 227 oveq1d O G i = sum^ n M i O E n sum^ n M i O E n + 𝑒 O E i + 1 = O G i + 𝑒 O E i + 1
229 228 3ad2ant3 φ i M ..^ N O G i = sum^ n M i O E n sum^ n M i O E n + 𝑒 O E i + 1 = O G i + 𝑒 O E i + 1
230 simpl φ j M i φ
231 152 sseli j M i j Z
232 231 adantl φ j M i j Z
233 230 232 204 syl2anc φ j M i E j dom O
234 233 adantlr φ i Z j M i E j dom O
235 234 ralrimiva φ i Z j M i E j dom O
236 iunss j = M i E j dom O j M i E j dom O
237 235 236 sylibr φ i Z j = M i E j dom O
238 172 237 eqsstrd φ i Z G i dom O
239 162 163 238 syl2anc φ i M ..^ N G i dom O
240 185 42 239 omexrcl φ i M ..^ N O G i *
241 108 208 sstrd φ i M ..^ N E i + 1 dom O
242 185 42 241 omexrcl φ i M ..^ N O E i + 1 *
243 240 242 xaddcomd φ i M ..^ N O G i + 𝑒 O E i + 1 = O E i + 1 + 𝑒 O G i
244 243 3adant3 φ i M ..^ N O G i = sum^ n M i O E n O G i + 𝑒 O E i + 1 = O E i + 1 + 𝑒 O G i
245 225 229 244 3eqtrd φ i M ..^ N O G i = sum^ n M i O E n sum^ n M i + 1 O E n = O E i + 1 + 𝑒 O G i
246 184 212 245 3eqtr4d φ i M ..^ N O G i = sum^ n M i O E n O G i + 1 = sum^ n M i + 1 O E n
247 87 88 91 246 syl3anc i M ..^ N φ O G i = sum^ n M i O E n φ O G i + 1 = sum^ n M i + 1 O E n
248 247 3exp i M ..^ N φ O G i = sum^ n M i O E n φ O G i + 1 = sum^ n M i + 1 O E n
249 16 22 28 34 86 248 fzind2 N M N φ O G N = sum^ n M N O E n
250 9 10 249 sylc φ O G N = sum^ n M N O E n