Metamath Proof Explorer


Theorem disjiun2

Description: In a disjoint collection, an indexed union is disjoint from an additional term. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses disjiun2.1 φDisjxAB
disjiun2.2 φCA
disjiun2.3 φDAC
disjiun2.4 x=DB=E
Assertion disjiun2 φxCBE=

Proof

Step Hyp Ref Expression
1 disjiun2.1 φDisjxAB
2 disjiun2.2 φCA
3 disjiun2.3 φDAC
4 disjiun2.4 x=DB=E
5 4 iunxsng DACxDB=E
6 3 5 syl φxDB=E
7 6 ineq2d φxCBxDB=xCBE
8 eldifi DACDA
9 snssi DADA
10 3 8 9 3syl φDA
11 3 eldifbd φ¬DC
12 disjsn CD=¬DC
13 11 12 sylibr φCD=
14 disjiun DisjxABCADACD=xCBxDB=
15 1 2 10 13 14 syl13anc φxCBxDB=
16 7 15 eqtr3d φxCBE=