| Step |
Hyp |
Ref |
Expression |
| 1 |
|
disjiun2.1 |
|- ( ph -> Disj_ x e. A B ) |
| 2 |
|
disjiun2.2 |
|- ( ph -> C C_ A ) |
| 3 |
|
disjiun2.3 |
|- ( ph -> D e. ( A \ C ) ) |
| 4 |
|
disjiun2.4 |
|- ( x = D -> B = E ) |
| 5 |
4
|
iunxsng |
|- ( D e. ( A \ C ) -> U_ x e. { D } B = E ) |
| 6 |
3 5
|
syl |
|- ( ph -> U_ x e. { D } B = E ) |
| 7 |
6
|
ineq2d |
|- ( ph -> ( U_ x e. C B i^i U_ x e. { D } B ) = ( U_ x e. C B i^i E ) ) |
| 8 |
|
eldifi |
|- ( D e. ( A \ C ) -> D e. A ) |
| 9 |
|
snssi |
|- ( D e. A -> { D } C_ A ) |
| 10 |
3 8 9
|
3syl |
|- ( ph -> { D } C_ A ) |
| 11 |
3
|
eldifbd |
|- ( ph -> -. D e. C ) |
| 12 |
|
disjsn |
|- ( ( C i^i { D } ) = (/) <-> -. D e. C ) |
| 13 |
11 12
|
sylibr |
|- ( ph -> ( C i^i { D } ) = (/) ) |
| 14 |
|
disjiun |
|- ( ( Disj_ x e. A B /\ ( C C_ A /\ { D } C_ A /\ ( C i^i { D } ) = (/) ) ) -> ( U_ x e. C B i^i U_ x e. { D } B ) = (/) ) |
| 15 |
1 2 10 13 14
|
syl13anc |
|- ( ph -> ( U_ x e. C B i^i U_ x e. { D } B ) = (/) ) |
| 16 |
7 15
|
eqtr3d |
|- ( ph -> ( U_ x e. C B i^i E ) = (/) ) |