Step |
Hyp |
Ref |
Expression |
1 |
|
disjiun2.1 |
|- ( ph -> Disj_ x e. A B ) |
2 |
|
disjiun2.2 |
|- ( ph -> C C_ A ) |
3 |
|
disjiun2.3 |
|- ( ph -> D e. ( A \ C ) ) |
4 |
|
disjiun2.4 |
|- ( x = D -> B = E ) |
5 |
4
|
iunxsng |
|- ( D e. ( A \ C ) -> U_ x e. { D } B = E ) |
6 |
3 5
|
syl |
|- ( ph -> U_ x e. { D } B = E ) |
7 |
6
|
ineq2d |
|- ( ph -> ( U_ x e. C B i^i U_ x e. { D } B ) = ( U_ x e. C B i^i E ) ) |
8 |
|
eldifi |
|- ( D e. ( A \ C ) -> D e. A ) |
9 |
|
snssi |
|- ( D e. A -> { D } C_ A ) |
10 |
3 8 9
|
3syl |
|- ( ph -> { D } C_ A ) |
11 |
3
|
eldifbd |
|- ( ph -> -. D e. C ) |
12 |
|
disjsn |
|- ( ( C i^i { D } ) = (/) <-> -. D e. C ) |
13 |
11 12
|
sylibr |
|- ( ph -> ( C i^i { D } ) = (/) ) |
14 |
|
disjiun |
|- ( ( Disj_ x e. A B /\ ( C C_ A /\ { D } C_ A /\ ( C i^i { D } ) = (/) ) ) -> ( U_ x e. C B i^i U_ x e. { D } B ) = (/) ) |
15 |
1 2 10 13 14
|
syl13anc |
|- ( ph -> ( U_ x e. C B i^i U_ x e. { D } B ) = (/) ) |
16 |
7 15
|
eqtr3d |
|- ( ph -> ( U_ x e. C B i^i E ) = (/) ) |