Step |
Hyp |
Ref |
Expression |
1 |
|
caratheodorylem1.o |
|- ( ph -> O e. OutMeas ) |
2 |
|
caratheodorylem1.s |
|- S = ( CaraGen ` O ) |
3 |
|
caratheodorylem1.z |
|- Z = ( ZZ>= ` M ) |
4 |
|
caratheodorylem1.e |
|- ( ph -> E : Z --> S ) |
5 |
|
caratheodorylem1.dj |
|- ( ph -> Disj_ n e. Z ( E ` n ) ) |
6 |
|
caratheodorylem1.g |
|- G = ( n e. Z |-> U_ i e. ( M ... n ) ( E ` i ) ) |
7 |
|
caratheodorylem1.n |
|- ( ph -> N e. ( ZZ>= ` M ) ) |
8 |
|
eluzfz2 |
|- ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) ) |
9 |
7 8
|
syl |
|- ( ph -> N e. ( M ... N ) ) |
10 |
|
id |
|- ( ph -> ph ) |
11 |
|
2fveq3 |
|- ( j = M -> ( O ` ( G ` j ) ) = ( O ` ( G ` M ) ) ) |
12 |
|
oveq2 |
|- ( j = M -> ( M ... j ) = ( M ... M ) ) |
13 |
12
|
mpteq1d |
|- ( j = M -> ( n e. ( M ... j ) |-> ( O ` ( E ` n ) ) ) = ( n e. ( M ... M ) |-> ( O ` ( E ` n ) ) ) ) |
14 |
13
|
fveq2d |
|- ( j = M -> ( sum^ ` ( n e. ( M ... j ) |-> ( O ` ( E ` n ) ) ) ) = ( sum^ ` ( n e. ( M ... M ) |-> ( O ` ( E ` n ) ) ) ) ) |
15 |
11 14
|
eqeq12d |
|- ( j = M -> ( ( O ` ( G ` j ) ) = ( sum^ ` ( n e. ( M ... j ) |-> ( O ` ( E ` n ) ) ) ) <-> ( O ` ( G ` M ) ) = ( sum^ ` ( n e. ( M ... M ) |-> ( O ` ( E ` n ) ) ) ) ) ) |
16 |
15
|
imbi2d |
|- ( j = M -> ( ( ph -> ( O ` ( G ` j ) ) = ( sum^ ` ( n e. ( M ... j ) |-> ( O ` ( E ` n ) ) ) ) ) <-> ( ph -> ( O ` ( G ` M ) ) = ( sum^ ` ( n e. ( M ... M ) |-> ( O ` ( E ` n ) ) ) ) ) ) ) |
17 |
|
2fveq3 |
|- ( j = i -> ( O ` ( G ` j ) ) = ( O ` ( G ` i ) ) ) |
18 |
|
oveq2 |
|- ( j = i -> ( M ... j ) = ( M ... i ) ) |
19 |
18
|
mpteq1d |
|- ( j = i -> ( n e. ( M ... j ) |-> ( O ` ( E ` n ) ) ) = ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) |
20 |
19
|
fveq2d |
|- ( j = i -> ( sum^ ` ( n e. ( M ... j ) |-> ( O ` ( E ` n ) ) ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) |
21 |
17 20
|
eqeq12d |
|- ( j = i -> ( ( O ` ( G ` j ) ) = ( sum^ ` ( n e. ( M ... j ) |-> ( O ` ( E ` n ) ) ) ) <-> ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) ) |
22 |
21
|
imbi2d |
|- ( j = i -> ( ( ph -> ( O ` ( G ` j ) ) = ( sum^ ` ( n e. ( M ... j ) |-> ( O ` ( E ` n ) ) ) ) ) <-> ( ph -> ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) ) ) |
23 |
|
2fveq3 |
|- ( j = ( i + 1 ) -> ( O ` ( G ` j ) ) = ( O ` ( G ` ( i + 1 ) ) ) ) |
24 |
|
oveq2 |
|- ( j = ( i + 1 ) -> ( M ... j ) = ( M ... ( i + 1 ) ) ) |
25 |
24
|
mpteq1d |
|- ( j = ( i + 1 ) -> ( n e. ( M ... j ) |-> ( O ` ( E ` n ) ) ) = ( n e. ( M ... ( i + 1 ) ) |-> ( O ` ( E ` n ) ) ) ) |
26 |
25
|
fveq2d |
|- ( j = ( i + 1 ) -> ( sum^ ` ( n e. ( M ... j ) |-> ( O ` ( E ` n ) ) ) ) = ( sum^ ` ( n e. ( M ... ( i + 1 ) ) |-> ( O ` ( E ` n ) ) ) ) ) |
27 |
23 26
|
eqeq12d |
|- ( j = ( i + 1 ) -> ( ( O ` ( G ` j ) ) = ( sum^ ` ( n e. ( M ... j ) |-> ( O ` ( E ` n ) ) ) ) <-> ( O ` ( G ` ( i + 1 ) ) ) = ( sum^ ` ( n e. ( M ... ( i + 1 ) ) |-> ( O ` ( E ` n ) ) ) ) ) ) |
28 |
27
|
imbi2d |
|- ( j = ( i + 1 ) -> ( ( ph -> ( O ` ( G ` j ) ) = ( sum^ ` ( n e. ( M ... j ) |-> ( O ` ( E ` n ) ) ) ) ) <-> ( ph -> ( O ` ( G ` ( i + 1 ) ) ) = ( sum^ ` ( n e. ( M ... ( i + 1 ) ) |-> ( O ` ( E ` n ) ) ) ) ) ) ) |
29 |
|
2fveq3 |
|- ( j = N -> ( O ` ( G ` j ) ) = ( O ` ( G ` N ) ) ) |
30 |
|
oveq2 |
|- ( j = N -> ( M ... j ) = ( M ... N ) ) |
31 |
30
|
mpteq1d |
|- ( j = N -> ( n e. ( M ... j ) |-> ( O ` ( E ` n ) ) ) = ( n e. ( M ... N ) |-> ( O ` ( E ` n ) ) ) ) |
32 |
31
|
fveq2d |
|- ( j = N -> ( sum^ ` ( n e. ( M ... j ) |-> ( O ` ( E ` n ) ) ) ) = ( sum^ ` ( n e. ( M ... N ) |-> ( O ` ( E ` n ) ) ) ) ) |
33 |
29 32
|
eqeq12d |
|- ( j = N -> ( ( O ` ( G ` j ) ) = ( sum^ ` ( n e. ( M ... j ) |-> ( O ` ( E ` n ) ) ) ) <-> ( O ` ( G ` N ) ) = ( sum^ ` ( n e. ( M ... N ) |-> ( O ` ( E ` n ) ) ) ) ) ) |
34 |
33
|
imbi2d |
|- ( j = N -> ( ( ph -> ( O ` ( G ` j ) ) = ( sum^ ` ( n e. ( M ... j ) |-> ( O ` ( E ` n ) ) ) ) ) <-> ( ph -> ( O ` ( G ` N ) ) = ( sum^ ` ( n e. ( M ... N ) |-> ( O ` ( E ` n ) ) ) ) ) ) ) |
35 |
|
eluzel2 |
|- ( N e. ( ZZ>= ` M ) -> M e. ZZ ) |
36 |
7 35
|
syl |
|- ( ph -> M e. ZZ ) |
37 |
|
fzsn |
|- ( M e. ZZ -> ( M ... M ) = { M } ) |
38 |
36 37
|
syl |
|- ( ph -> ( M ... M ) = { M } ) |
39 |
38
|
mpteq1d |
|- ( ph -> ( n e. ( M ... M ) |-> ( O ` ( E ` n ) ) ) = ( n e. { M } |-> ( O ` ( E ` n ) ) ) ) |
40 |
39
|
fveq2d |
|- ( ph -> ( sum^ ` ( n e. ( M ... M ) |-> ( O ` ( E ` n ) ) ) ) = ( sum^ ` ( n e. { M } |-> ( O ` ( E ` n ) ) ) ) ) |
41 |
1
|
adantr |
|- ( ( ph /\ n e. { M } ) -> O e. OutMeas ) |
42 |
|
eqid |
|- U. dom O = U. dom O |
43 |
2
|
caragenss |
|- ( O e. OutMeas -> S C_ dom O ) |
44 |
41 43
|
syl |
|- ( ( ph /\ n e. { M } ) -> S C_ dom O ) |
45 |
4
|
adantr |
|- ( ( ph /\ n e. { M } ) -> E : Z --> S ) |
46 |
|
elsni |
|- ( n e. { M } -> n = M ) |
47 |
46
|
adantl |
|- ( ( ph /\ n e. { M } ) -> n = M ) |
48 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
49 |
36 48
|
syl |
|- ( ph -> M e. ( ZZ>= ` M ) ) |
50 |
49 3
|
eleqtrrdi |
|- ( ph -> M e. Z ) |
51 |
50
|
adantr |
|- ( ( ph /\ n e. { M } ) -> M e. Z ) |
52 |
47 51
|
eqeltrd |
|- ( ( ph /\ n e. { M } ) -> n e. Z ) |
53 |
45 52
|
ffvelrnd |
|- ( ( ph /\ n e. { M } ) -> ( E ` n ) e. S ) |
54 |
44 53
|
sseldd |
|- ( ( ph /\ n e. { M } ) -> ( E ` n ) e. dom O ) |
55 |
|
elssuni |
|- ( ( E ` n ) e. dom O -> ( E ` n ) C_ U. dom O ) |
56 |
54 55
|
syl |
|- ( ( ph /\ n e. { M } ) -> ( E ` n ) C_ U. dom O ) |
57 |
41 42 56
|
omecl |
|- ( ( ph /\ n e. { M } ) -> ( O ` ( E ` n ) ) e. ( 0 [,] +oo ) ) |
58 |
|
eqid |
|- ( n e. { M } |-> ( O ` ( E ` n ) ) ) = ( n e. { M } |-> ( O ` ( E ` n ) ) ) |
59 |
57 58
|
fmptd |
|- ( ph -> ( n e. { M } |-> ( O ` ( E ` n ) ) ) : { M } --> ( 0 [,] +oo ) ) |
60 |
36 59
|
sge0sn |
|- ( ph -> ( sum^ ` ( n e. { M } |-> ( O ` ( E ` n ) ) ) ) = ( ( n e. { M } |-> ( O ` ( E ` n ) ) ) ` M ) ) |
61 |
|
eqidd |
|- ( ph -> ( n e. { M } |-> ( O ` ( E ` n ) ) ) = ( n e. { M } |-> ( O ` ( E ` n ) ) ) ) |
62 |
38
|
iuneq1d |
|- ( ph -> U_ i e. ( M ... M ) ( E ` i ) = U_ i e. { M } ( E ` i ) ) |
63 |
|
fveq2 |
|- ( i = M -> ( E ` i ) = ( E ` M ) ) |
64 |
63
|
iunxsng |
|- ( M e. Z -> U_ i e. { M } ( E ` i ) = ( E ` M ) ) |
65 |
50 64
|
syl |
|- ( ph -> U_ i e. { M } ( E ` i ) = ( E ` M ) ) |
66 |
|
eqidd |
|- ( ph -> ( E ` M ) = ( E ` M ) ) |
67 |
62 65 66
|
3eqtrrd |
|- ( ph -> ( E ` M ) = U_ i e. ( M ... M ) ( E ` i ) ) |
68 |
67
|
adantr |
|- ( ( ph /\ n = M ) -> ( E ` M ) = U_ i e. ( M ... M ) ( E ` i ) ) |
69 |
|
fveq2 |
|- ( n = M -> ( E ` n ) = ( E ` M ) ) |
70 |
69
|
adantl |
|- ( ( ph /\ n = M ) -> ( E ` n ) = ( E ` M ) ) |
71 |
|
oveq2 |
|- ( n = M -> ( M ... n ) = ( M ... M ) ) |
72 |
71
|
iuneq1d |
|- ( n = M -> U_ i e. ( M ... n ) ( E ` i ) = U_ i e. ( M ... M ) ( E ` i ) ) |
73 |
|
ovex |
|- ( M ... M ) e. _V |
74 |
|
fvex |
|- ( E ` i ) e. _V |
75 |
73 74
|
iunex |
|- U_ i e. ( M ... M ) ( E ` i ) e. _V |
76 |
75
|
a1i |
|- ( ph -> U_ i e. ( M ... M ) ( E ` i ) e. _V ) |
77 |
6 72 50 76
|
fvmptd3 |
|- ( ph -> ( G ` M ) = U_ i e. ( M ... M ) ( E ` i ) ) |
78 |
77
|
adantr |
|- ( ( ph /\ n = M ) -> ( G ` M ) = U_ i e. ( M ... M ) ( E ` i ) ) |
79 |
68 70 78
|
3eqtr4d |
|- ( ( ph /\ n = M ) -> ( E ` n ) = ( G ` M ) ) |
80 |
79
|
fveq2d |
|- ( ( ph /\ n = M ) -> ( O ` ( E ` n ) ) = ( O ` ( G ` M ) ) ) |
81 |
|
snidg |
|- ( M e. Z -> M e. { M } ) |
82 |
50 81
|
syl |
|- ( ph -> M e. { M } ) |
83 |
|
fvexd |
|- ( ph -> ( O ` ( G ` M ) ) e. _V ) |
84 |
61 80 82 83
|
fvmptd |
|- ( ph -> ( ( n e. { M } |-> ( O ` ( E ` n ) ) ) ` M ) = ( O ` ( G ` M ) ) ) |
85 |
40 60 84
|
3eqtrrd |
|- ( ph -> ( O ` ( G ` M ) ) = ( sum^ ` ( n e. ( M ... M ) |-> ( O ` ( E ` n ) ) ) ) ) |
86 |
85
|
a1i |
|- ( N e. ( ZZ>= ` M ) -> ( ph -> ( O ` ( G ` M ) ) = ( sum^ ` ( n e. ( M ... M ) |-> ( O ` ( E ` n ) ) ) ) ) ) |
87 |
|
simp3 |
|- ( ( i e. ( M ..^ N ) /\ ( ph -> ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) /\ ph ) -> ph ) |
88 |
|
simp1 |
|- ( ( i e. ( M ..^ N ) /\ ( ph -> ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) /\ ph ) -> i e. ( M ..^ N ) ) |
89 |
|
id |
|- ( ( ph -> ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) -> ( ph -> ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) ) |
90 |
89
|
imp |
|- ( ( ( ph -> ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) /\ ph ) -> ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) |
91 |
90
|
3adant1 |
|- ( ( i e. ( M ..^ N ) /\ ( ph -> ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) /\ ph ) -> ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) |
92 |
|
elfzoel1 |
|- ( i e. ( M ..^ N ) -> M e. ZZ ) |
93 |
|
elfzoelz |
|- ( i e. ( M ..^ N ) -> i e. ZZ ) |
94 |
93
|
peano2zd |
|- ( i e. ( M ..^ N ) -> ( i + 1 ) e. ZZ ) |
95 |
92
|
zred |
|- ( i e. ( M ..^ N ) -> M e. RR ) |
96 |
94
|
zred |
|- ( i e. ( M ..^ N ) -> ( i + 1 ) e. RR ) |
97 |
93
|
zred |
|- ( i e. ( M ..^ N ) -> i e. RR ) |
98 |
|
elfzole1 |
|- ( i e. ( M ..^ N ) -> M <_ i ) |
99 |
97
|
ltp1d |
|- ( i e. ( M ..^ N ) -> i < ( i + 1 ) ) |
100 |
95 97 96 98 99
|
lelttrd |
|- ( i e. ( M ..^ N ) -> M < ( i + 1 ) ) |
101 |
95 96 100
|
ltled |
|- ( i e. ( M ..^ N ) -> M <_ ( i + 1 ) ) |
102 |
|
leid |
|- ( ( i + 1 ) e. RR -> ( i + 1 ) <_ ( i + 1 ) ) |
103 |
96 102
|
syl |
|- ( i e. ( M ..^ N ) -> ( i + 1 ) <_ ( i + 1 ) ) |
104 |
92 94 94 101 103
|
elfzd |
|- ( i e. ( M ..^ N ) -> ( i + 1 ) e. ( M ... ( i + 1 ) ) ) |
105 |
104
|
adantl |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( i + 1 ) e. ( M ... ( i + 1 ) ) ) |
106 |
|
fveq2 |
|- ( j = ( i + 1 ) -> ( E ` j ) = ( E ` ( i + 1 ) ) ) |
107 |
106
|
ssiun2s |
|- ( ( i + 1 ) e. ( M ... ( i + 1 ) ) -> ( E ` ( i + 1 ) ) C_ U_ j e. ( M ... ( i + 1 ) ) ( E ` j ) ) |
108 |
105 107
|
syl |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( E ` ( i + 1 ) ) C_ U_ j e. ( M ... ( i + 1 ) ) ( E ` j ) ) |
109 |
|
fveq2 |
|- ( i = j -> ( E ` i ) = ( E ` j ) ) |
110 |
109
|
cbviunv |
|- U_ i e. ( M ... n ) ( E ` i ) = U_ j e. ( M ... n ) ( E ` j ) |
111 |
110
|
mpteq2i |
|- ( n e. Z |-> U_ i e. ( M ... n ) ( E ` i ) ) = ( n e. Z |-> U_ j e. ( M ... n ) ( E ` j ) ) |
112 |
6 111
|
eqtri |
|- G = ( n e. Z |-> U_ j e. ( M ... n ) ( E ` j ) ) |
113 |
|
oveq2 |
|- ( n = ( i + 1 ) -> ( M ... n ) = ( M ... ( i + 1 ) ) ) |
114 |
113
|
iuneq1d |
|- ( n = ( i + 1 ) -> U_ j e. ( M ... n ) ( E ` j ) = U_ j e. ( M ... ( i + 1 ) ) ( E ` j ) ) |
115 |
36
|
adantr |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> M e. ZZ ) |
116 |
93
|
adantl |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> i e. ZZ ) |
117 |
116
|
peano2zd |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( i + 1 ) e. ZZ ) |
118 |
115
|
zred |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> M e. RR ) |
119 |
117
|
zred |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( i + 1 ) e. RR ) |
120 |
116
|
zred |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> i e. RR ) |
121 |
98
|
adantl |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> M <_ i ) |
122 |
120
|
ltp1d |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> i < ( i + 1 ) ) |
123 |
118 120 119 121 122
|
lelttrd |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> M < ( i + 1 ) ) |
124 |
118 119 123
|
ltled |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> M <_ ( i + 1 ) ) |
125 |
115 117 124
|
3jca |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( M e. ZZ /\ ( i + 1 ) e. ZZ /\ M <_ ( i + 1 ) ) ) |
126 |
|
eluz2 |
|- ( ( i + 1 ) e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ ( i + 1 ) e. ZZ /\ M <_ ( i + 1 ) ) ) |
127 |
125 126
|
sylibr |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( i + 1 ) e. ( ZZ>= ` M ) ) |
128 |
3
|
eqcomi |
|- ( ZZ>= ` M ) = Z |
129 |
127 128
|
eleqtrdi |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( i + 1 ) e. Z ) |
130 |
|
ovex |
|- ( M ... ( i + 1 ) ) e. _V |
131 |
|
fvex |
|- ( E ` j ) e. _V |
132 |
130 131
|
iunex |
|- U_ j e. ( M ... ( i + 1 ) ) ( E ` j ) e. _V |
133 |
132
|
a1i |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> U_ j e. ( M ... ( i + 1 ) ) ( E ` j ) e. _V ) |
134 |
112 114 129 133
|
fvmptd3 |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( G ` ( i + 1 ) ) = U_ j e. ( M ... ( i + 1 ) ) ( E ` j ) ) |
135 |
134
|
eqcomd |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> U_ j e. ( M ... ( i + 1 ) ) ( E ` j ) = ( G ` ( i + 1 ) ) ) |
136 |
108 135
|
sseqtrd |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( E ` ( i + 1 ) ) C_ ( G ` ( i + 1 ) ) ) |
137 |
|
sseqin2 |
|- ( ( E ` ( i + 1 ) ) C_ ( G ` ( i + 1 ) ) <-> ( ( G ` ( i + 1 ) ) i^i ( E ` ( i + 1 ) ) ) = ( E ` ( i + 1 ) ) ) |
138 |
137
|
biimpi |
|- ( ( E ` ( i + 1 ) ) C_ ( G ` ( i + 1 ) ) -> ( ( G ` ( i + 1 ) ) i^i ( E ` ( i + 1 ) ) ) = ( E ` ( i + 1 ) ) ) |
139 |
136 138
|
syl |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( ( G ` ( i + 1 ) ) i^i ( E ` ( i + 1 ) ) ) = ( E ` ( i + 1 ) ) ) |
140 |
139
|
fveq2d |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( O ` ( ( G ` ( i + 1 ) ) i^i ( E ` ( i + 1 ) ) ) ) = ( O ` ( E ` ( i + 1 ) ) ) ) |
141 |
|
nfcv |
|- F/_ j ( E ` ( i + 1 ) ) |
142 |
|
elfzouz |
|- ( i e. ( M ..^ N ) -> i e. ( ZZ>= ` M ) ) |
143 |
142
|
adantl |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> i e. ( ZZ>= ` M ) ) |
144 |
141 143 106
|
iunp1 |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> U_ j e. ( M ... ( i + 1 ) ) ( E ` j ) = ( U_ j e. ( M ... i ) ( E ` j ) u. ( E ` ( i + 1 ) ) ) ) |
145 |
134 144
|
eqtrd |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( G ` ( i + 1 ) ) = ( U_ j e. ( M ... i ) ( E ` j ) u. ( E ` ( i + 1 ) ) ) ) |
146 |
145
|
difeq1d |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( ( G ` ( i + 1 ) ) \ ( E ` ( i + 1 ) ) ) = ( ( U_ j e. ( M ... i ) ( E ` j ) u. ( E ` ( i + 1 ) ) ) \ ( E ` ( i + 1 ) ) ) ) |
147 |
|
fveq2 |
|- ( n = j -> ( E ` n ) = ( E ` j ) ) |
148 |
147
|
cbvdisjv |
|- ( Disj_ n e. Z ( E ` n ) <-> Disj_ j e. Z ( E ` j ) ) |
149 |
5 148
|
sylib |
|- ( ph -> Disj_ j e. Z ( E ` j ) ) |
150 |
149
|
adantr |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> Disj_ j e. Z ( E ` j ) ) |
151 |
|
fzssuz |
|- ( M ... i ) C_ ( ZZ>= ` M ) |
152 |
151 128
|
sseqtri |
|- ( M ... i ) C_ Z |
153 |
152
|
a1i |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( M ... i ) C_ Z ) |
154 |
|
fzp1nel |
|- -. ( i + 1 ) e. ( M ... i ) |
155 |
154
|
a1i |
|- ( i e. ( M ..^ N ) -> -. ( i + 1 ) e. ( M ... i ) ) |
156 |
155
|
adantl |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> -. ( i + 1 ) e. ( M ... i ) ) |
157 |
129 156
|
eldifd |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( i + 1 ) e. ( Z \ ( M ... i ) ) ) |
158 |
150 153 157 106
|
disjiun2 |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( U_ j e. ( M ... i ) ( E ` j ) i^i ( E ` ( i + 1 ) ) ) = (/) ) |
159 |
|
undif4 |
|- ( ( U_ j e. ( M ... i ) ( E ` j ) i^i ( E ` ( i + 1 ) ) ) = (/) -> ( U_ j e. ( M ... i ) ( E ` j ) u. ( ( E ` ( i + 1 ) ) \ ( E ` ( i + 1 ) ) ) ) = ( ( U_ j e. ( M ... i ) ( E ` j ) u. ( E ` ( i + 1 ) ) ) \ ( E ` ( i + 1 ) ) ) ) |
160 |
158 159
|
syl |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( U_ j e. ( M ... i ) ( E ` j ) u. ( ( E ` ( i + 1 ) ) \ ( E ` ( i + 1 ) ) ) ) = ( ( U_ j e. ( M ... i ) ( E ` j ) u. ( E ` ( i + 1 ) ) ) \ ( E ` ( i + 1 ) ) ) ) |
161 |
160
|
eqcomd |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( ( U_ j e. ( M ... i ) ( E ` j ) u. ( E ` ( i + 1 ) ) ) \ ( E ` ( i + 1 ) ) ) = ( U_ j e. ( M ... i ) ( E ` j ) u. ( ( E ` ( i + 1 ) ) \ ( E ` ( i + 1 ) ) ) ) ) |
162 |
|
simpl |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ph ) |
163 |
143 128
|
eleqtrdi |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> i e. Z ) |
164 |
112
|
a1i |
|- ( ( ph /\ i e. Z ) -> G = ( n e. Z |-> U_ j e. ( M ... n ) ( E ` j ) ) ) |
165 |
|
simpr |
|- ( ( ( ph /\ i e. Z ) /\ n = i ) -> n = i ) |
166 |
165
|
oveq2d |
|- ( ( ( ph /\ i e. Z ) /\ n = i ) -> ( M ... n ) = ( M ... i ) ) |
167 |
166
|
iuneq1d |
|- ( ( ( ph /\ i e. Z ) /\ n = i ) -> U_ j e. ( M ... n ) ( E ` j ) = U_ j e. ( M ... i ) ( E ` j ) ) |
168 |
|
simpr |
|- ( ( ph /\ i e. Z ) -> i e. Z ) |
169 |
|
ovex |
|- ( M ... i ) e. _V |
170 |
169 131
|
iunex |
|- U_ j e. ( M ... i ) ( E ` j ) e. _V |
171 |
170
|
a1i |
|- ( ( ph /\ i e. Z ) -> U_ j e. ( M ... i ) ( E ` j ) e. _V ) |
172 |
164 167 168 171
|
fvmptd |
|- ( ( ph /\ i e. Z ) -> ( G ` i ) = U_ j e. ( M ... i ) ( E ` j ) ) |
173 |
162 163 172
|
syl2anc |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( G ` i ) = U_ j e. ( M ... i ) ( E ` j ) ) |
174 |
173
|
eqcomd |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> U_ j e. ( M ... i ) ( E ` j ) = ( G ` i ) ) |
175 |
|
difid |
|- ( ( E ` ( i + 1 ) ) \ ( E ` ( i + 1 ) ) ) = (/) |
176 |
175
|
a1i |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( ( E ` ( i + 1 ) ) \ ( E ` ( i + 1 ) ) ) = (/) ) |
177 |
174 176
|
uneq12d |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( U_ j e. ( M ... i ) ( E ` j ) u. ( ( E ` ( i + 1 ) ) \ ( E ` ( i + 1 ) ) ) ) = ( ( G ` i ) u. (/) ) ) |
178 |
|
un0 |
|- ( ( G ` i ) u. (/) ) = ( G ` i ) |
179 |
178
|
a1i |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( ( G ` i ) u. (/) ) = ( G ` i ) ) |
180 |
177 179
|
eqtrd |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( U_ j e. ( M ... i ) ( E ` j ) u. ( ( E ` ( i + 1 ) ) \ ( E ` ( i + 1 ) ) ) ) = ( G ` i ) ) |
181 |
146 161 180
|
3eqtrd |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( ( G ` ( i + 1 ) ) \ ( E ` ( i + 1 ) ) ) = ( G ` i ) ) |
182 |
181
|
fveq2d |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( O ` ( ( G ` ( i + 1 ) ) \ ( E ` ( i + 1 ) ) ) ) = ( O ` ( G ` i ) ) ) |
183 |
140 182
|
oveq12d |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( ( O ` ( ( G ` ( i + 1 ) ) i^i ( E ` ( i + 1 ) ) ) ) +e ( O ` ( ( G ` ( i + 1 ) ) \ ( E ` ( i + 1 ) ) ) ) ) = ( ( O ` ( E ` ( i + 1 ) ) ) +e ( O ` ( G ` i ) ) ) ) |
184 |
183
|
3adant3 |
|- ( ( ph /\ i e. ( M ..^ N ) /\ ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) -> ( ( O ` ( ( G ` ( i + 1 ) ) i^i ( E ` ( i + 1 ) ) ) ) +e ( O ` ( ( G ` ( i + 1 ) ) \ ( E ` ( i + 1 ) ) ) ) ) = ( ( O ` ( E ` ( i + 1 ) ) ) +e ( O ` ( G ` i ) ) ) ) |
185 |
1
|
adantr |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> O e. OutMeas ) |
186 |
4
|
adantr |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> E : Z --> S ) |
187 |
186 129
|
ffvelrnd |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( E ` ( i + 1 ) ) e. S ) |
188 |
|
simpll |
|- ( ( ( ph /\ i e. ( M ..^ N ) ) /\ j e. ( M ... ( i + 1 ) ) ) -> ph ) |
189 |
92
|
adantr |
|- ( ( i e. ( M ..^ N ) /\ j e. ( M ... ( i + 1 ) ) ) -> M e. ZZ ) |
190 |
|
elfzelz |
|- ( j e. ( M ... ( i + 1 ) ) -> j e. ZZ ) |
191 |
190
|
adantl |
|- ( ( i e. ( M ..^ N ) /\ j e. ( M ... ( i + 1 ) ) ) -> j e. ZZ ) |
192 |
|
elfzle1 |
|- ( j e. ( M ... ( i + 1 ) ) -> M <_ j ) |
193 |
192
|
adantl |
|- ( ( i e. ( M ..^ N ) /\ j e. ( M ... ( i + 1 ) ) ) -> M <_ j ) |
194 |
189 191 193
|
3jca |
|- ( ( i e. ( M ..^ N ) /\ j e. ( M ... ( i + 1 ) ) ) -> ( M e. ZZ /\ j e. ZZ /\ M <_ j ) ) |
195 |
|
eluz2 |
|- ( j e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ j e. ZZ /\ M <_ j ) ) |
196 |
194 195
|
sylibr |
|- ( ( i e. ( M ..^ N ) /\ j e. ( M ... ( i + 1 ) ) ) -> j e. ( ZZ>= ` M ) ) |
197 |
196 128
|
eleqtrdi |
|- ( ( i e. ( M ..^ N ) /\ j e. ( M ... ( i + 1 ) ) ) -> j e. Z ) |
198 |
197
|
adantll |
|- ( ( ( ph /\ i e. ( M ..^ N ) ) /\ j e. ( M ... ( i + 1 ) ) ) -> j e. Z ) |
199 |
1 43
|
syl |
|- ( ph -> S C_ dom O ) |
200 |
199
|
adantr |
|- ( ( ph /\ j e. Z ) -> S C_ dom O ) |
201 |
4
|
ffvelrnda |
|- ( ( ph /\ j e. Z ) -> ( E ` j ) e. S ) |
202 |
200 201
|
sseldd |
|- ( ( ph /\ j e. Z ) -> ( E ` j ) e. dom O ) |
203 |
|
elssuni |
|- ( ( E ` j ) e. dom O -> ( E ` j ) C_ U. dom O ) |
204 |
202 203
|
syl |
|- ( ( ph /\ j e. Z ) -> ( E ` j ) C_ U. dom O ) |
205 |
188 198 204
|
syl2anc |
|- ( ( ( ph /\ i e. ( M ..^ N ) ) /\ j e. ( M ... ( i + 1 ) ) ) -> ( E ` j ) C_ U. dom O ) |
206 |
205
|
ralrimiva |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> A. j e. ( M ... ( i + 1 ) ) ( E ` j ) C_ U. dom O ) |
207 |
|
iunss |
|- ( U_ j e. ( M ... ( i + 1 ) ) ( E ` j ) C_ U. dom O <-> A. j e. ( M ... ( i + 1 ) ) ( E ` j ) C_ U. dom O ) |
208 |
206 207
|
sylibr |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> U_ j e. ( M ... ( i + 1 ) ) ( E ` j ) C_ U. dom O ) |
209 |
134 208
|
eqsstrd |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( G ` ( i + 1 ) ) C_ U. dom O ) |
210 |
185 2 42 187 209
|
caragensplit |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( ( O ` ( ( G ` ( i + 1 ) ) i^i ( E ` ( i + 1 ) ) ) ) +e ( O ` ( ( G ` ( i + 1 ) ) \ ( E ` ( i + 1 ) ) ) ) ) = ( O ` ( G ` ( i + 1 ) ) ) ) |
211 |
210
|
eqcomd |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( O ` ( G ` ( i + 1 ) ) ) = ( ( O ` ( ( G ` ( i + 1 ) ) i^i ( E ` ( i + 1 ) ) ) ) +e ( O ` ( ( G ` ( i + 1 ) ) \ ( E ` ( i + 1 ) ) ) ) ) ) |
212 |
211
|
3adant3 |
|- ( ( ph /\ i e. ( M ..^ N ) /\ ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) -> ( O ` ( G ` ( i + 1 ) ) ) = ( ( O ` ( ( G ` ( i + 1 ) ) i^i ( E ` ( i + 1 ) ) ) ) +e ( O ` ( ( G ` ( i + 1 ) ) \ ( E ` ( i + 1 ) ) ) ) ) ) |
213 |
185
|
adantr |
|- ( ( ( ph /\ i e. ( M ..^ N ) ) /\ n e. ( M ... ( i + 1 ) ) ) -> O e. OutMeas ) |
214 |
162
|
adantr |
|- ( ( ( ph /\ i e. ( M ..^ N ) ) /\ n e. ( M ... ( i + 1 ) ) ) -> ph ) |
215 |
|
elfzuz |
|- ( n e. ( M ... ( i + 1 ) ) -> n e. ( ZZ>= ` M ) ) |
216 |
215 128
|
eleqtrdi |
|- ( n e. ( M ... ( i + 1 ) ) -> n e. Z ) |
217 |
216
|
adantl |
|- ( ( ( ph /\ i e. ( M ..^ N ) ) /\ n e. ( M ... ( i + 1 ) ) ) -> n e. Z ) |
218 |
4 199
|
fssd |
|- ( ph -> E : Z --> dom O ) |
219 |
218
|
ffvelrnda |
|- ( ( ph /\ n e. Z ) -> ( E ` n ) e. dom O ) |
220 |
219 55
|
syl |
|- ( ( ph /\ n e. Z ) -> ( E ` n ) C_ U. dom O ) |
221 |
214 217 220
|
syl2anc |
|- ( ( ( ph /\ i e. ( M ..^ N ) ) /\ n e. ( M ... ( i + 1 ) ) ) -> ( E ` n ) C_ U. dom O ) |
222 |
213 42 221
|
omecl |
|- ( ( ( ph /\ i e. ( M ..^ N ) ) /\ n e. ( M ... ( i + 1 ) ) ) -> ( O ` ( E ` n ) ) e. ( 0 [,] +oo ) ) |
223 |
|
2fveq3 |
|- ( n = ( i + 1 ) -> ( O ` ( E ` n ) ) = ( O ` ( E ` ( i + 1 ) ) ) ) |
224 |
143 222 223
|
sge0p1 |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( sum^ ` ( n e. ( M ... ( i + 1 ) ) |-> ( O ` ( E ` n ) ) ) ) = ( ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) +e ( O ` ( E ` ( i + 1 ) ) ) ) ) |
225 |
224
|
3adant3 |
|- ( ( ph /\ i e. ( M ..^ N ) /\ ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) -> ( sum^ ` ( n e. ( M ... ( i + 1 ) ) |-> ( O ` ( E ` n ) ) ) ) = ( ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) +e ( O ` ( E ` ( i + 1 ) ) ) ) ) |
226 |
|
id |
|- ( ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) -> ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) |
227 |
226
|
eqcomd |
|- ( ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) -> ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) = ( O ` ( G ` i ) ) ) |
228 |
227
|
oveq1d |
|- ( ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) -> ( ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) +e ( O ` ( E ` ( i + 1 ) ) ) ) = ( ( O ` ( G ` i ) ) +e ( O ` ( E ` ( i + 1 ) ) ) ) ) |
229 |
228
|
3ad2ant3 |
|- ( ( ph /\ i e. ( M ..^ N ) /\ ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) -> ( ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) +e ( O ` ( E ` ( i + 1 ) ) ) ) = ( ( O ` ( G ` i ) ) +e ( O ` ( E ` ( i + 1 ) ) ) ) ) |
230 |
|
simpl |
|- ( ( ph /\ j e. ( M ... i ) ) -> ph ) |
231 |
152
|
sseli |
|- ( j e. ( M ... i ) -> j e. Z ) |
232 |
231
|
adantl |
|- ( ( ph /\ j e. ( M ... i ) ) -> j e. Z ) |
233 |
230 232 204
|
syl2anc |
|- ( ( ph /\ j e. ( M ... i ) ) -> ( E ` j ) C_ U. dom O ) |
234 |
233
|
adantlr |
|- ( ( ( ph /\ i e. Z ) /\ j e. ( M ... i ) ) -> ( E ` j ) C_ U. dom O ) |
235 |
234
|
ralrimiva |
|- ( ( ph /\ i e. Z ) -> A. j e. ( M ... i ) ( E ` j ) C_ U. dom O ) |
236 |
|
iunss |
|- ( U_ j e. ( M ... i ) ( E ` j ) C_ U. dom O <-> A. j e. ( M ... i ) ( E ` j ) C_ U. dom O ) |
237 |
235 236
|
sylibr |
|- ( ( ph /\ i e. Z ) -> U_ j e. ( M ... i ) ( E ` j ) C_ U. dom O ) |
238 |
172 237
|
eqsstrd |
|- ( ( ph /\ i e. Z ) -> ( G ` i ) C_ U. dom O ) |
239 |
162 163 238
|
syl2anc |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( G ` i ) C_ U. dom O ) |
240 |
185 42 239
|
omexrcl |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( O ` ( G ` i ) ) e. RR* ) |
241 |
108 208
|
sstrd |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( E ` ( i + 1 ) ) C_ U. dom O ) |
242 |
185 42 241
|
omexrcl |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( O ` ( E ` ( i + 1 ) ) ) e. RR* ) |
243 |
240 242
|
xaddcomd |
|- ( ( ph /\ i e. ( M ..^ N ) ) -> ( ( O ` ( G ` i ) ) +e ( O ` ( E ` ( i + 1 ) ) ) ) = ( ( O ` ( E ` ( i + 1 ) ) ) +e ( O ` ( G ` i ) ) ) ) |
244 |
243
|
3adant3 |
|- ( ( ph /\ i e. ( M ..^ N ) /\ ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) -> ( ( O ` ( G ` i ) ) +e ( O ` ( E ` ( i + 1 ) ) ) ) = ( ( O ` ( E ` ( i + 1 ) ) ) +e ( O ` ( G ` i ) ) ) ) |
245 |
225 229 244
|
3eqtrd |
|- ( ( ph /\ i e. ( M ..^ N ) /\ ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) -> ( sum^ ` ( n e. ( M ... ( i + 1 ) ) |-> ( O ` ( E ` n ) ) ) ) = ( ( O ` ( E ` ( i + 1 ) ) ) +e ( O ` ( G ` i ) ) ) ) |
246 |
184 212 245
|
3eqtr4d |
|- ( ( ph /\ i e. ( M ..^ N ) /\ ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) -> ( O ` ( G ` ( i + 1 ) ) ) = ( sum^ ` ( n e. ( M ... ( i + 1 ) ) |-> ( O ` ( E ` n ) ) ) ) ) |
247 |
87 88 91 246
|
syl3anc |
|- ( ( i e. ( M ..^ N ) /\ ( ph -> ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) /\ ph ) -> ( O ` ( G ` ( i + 1 ) ) ) = ( sum^ ` ( n e. ( M ... ( i + 1 ) ) |-> ( O ` ( E ` n ) ) ) ) ) |
248 |
247
|
3exp |
|- ( i e. ( M ..^ N ) -> ( ( ph -> ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) -> ( ph -> ( O ` ( G ` ( i + 1 ) ) ) = ( sum^ ` ( n e. ( M ... ( i + 1 ) ) |-> ( O ` ( E ` n ) ) ) ) ) ) ) |
249 |
16 22 28 34 86 248
|
fzind2 |
|- ( N e. ( M ... N ) -> ( ph -> ( O ` ( G ` N ) ) = ( sum^ ` ( n e. ( M ... N ) |-> ( O ` ( E ` n ) ) ) ) ) ) |
250 |
9 10 249
|
sylc |
|- ( ph -> ( O ` ( G ` N ) ) = ( sum^ ` ( n e. ( M ... N ) |-> ( O ` ( E ` n ) ) ) ) ) |