| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caratheodorylem1.o |  |-  ( ph -> O e. OutMeas ) | 
						
							| 2 |  | caratheodorylem1.s |  |-  S = ( CaraGen ` O ) | 
						
							| 3 |  | caratheodorylem1.z |  |-  Z = ( ZZ>= ` M ) | 
						
							| 4 |  | caratheodorylem1.e |  |-  ( ph -> E : Z --> S ) | 
						
							| 5 |  | caratheodorylem1.dj |  |-  ( ph -> Disj_ n e. Z ( E ` n ) ) | 
						
							| 6 |  | caratheodorylem1.g |  |-  G = ( n e. Z |-> U_ i e. ( M ... n ) ( E ` i ) ) | 
						
							| 7 |  | caratheodorylem1.n |  |-  ( ph -> N e. ( ZZ>= ` M ) ) | 
						
							| 8 |  | eluzfz2 |  |-  ( N e. ( ZZ>= ` M ) -> N e. ( M ... N ) ) | 
						
							| 9 | 7 8 | syl |  |-  ( ph -> N e. ( M ... N ) ) | 
						
							| 10 |  | id |  |-  ( ph -> ph ) | 
						
							| 11 |  | 2fveq3 |  |-  ( j = M -> ( O ` ( G ` j ) ) = ( O ` ( G ` M ) ) ) | 
						
							| 12 |  | oveq2 |  |-  ( j = M -> ( M ... j ) = ( M ... M ) ) | 
						
							| 13 | 12 | mpteq1d |  |-  ( j = M -> ( n e. ( M ... j ) |-> ( O ` ( E ` n ) ) ) = ( n e. ( M ... M ) |-> ( O ` ( E ` n ) ) ) ) | 
						
							| 14 | 13 | fveq2d |  |-  ( j = M -> ( sum^ ` ( n e. ( M ... j ) |-> ( O ` ( E ` n ) ) ) ) = ( sum^ ` ( n e. ( M ... M ) |-> ( O ` ( E ` n ) ) ) ) ) | 
						
							| 15 | 11 14 | eqeq12d |  |-  ( j = M -> ( ( O ` ( G ` j ) ) = ( sum^ ` ( n e. ( M ... j ) |-> ( O ` ( E ` n ) ) ) ) <-> ( O ` ( G ` M ) ) = ( sum^ ` ( n e. ( M ... M ) |-> ( O ` ( E ` n ) ) ) ) ) ) | 
						
							| 16 | 15 | imbi2d |  |-  ( j = M -> ( ( ph -> ( O ` ( G ` j ) ) = ( sum^ ` ( n e. ( M ... j ) |-> ( O ` ( E ` n ) ) ) ) ) <-> ( ph -> ( O ` ( G ` M ) ) = ( sum^ ` ( n e. ( M ... M ) |-> ( O ` ( E ` n ) ) ) ) ) ) ) | 
						
							| 17 |  | 2fveq3 |  |-  ( j = i -> ( O ` ( G ` j ) ) = ( O ` ( G ` i ) ) ) | 
						
							| 18 |  | oveq2 |  |-  ( j = i -> ( M ... j ) = ( M ... i ) ) | 
						
							| 19 | 18 | mpteq1d |  |-  ( j = i -> ( n e. ( M ... j ) |-> ( O ` ( E ` n ) ) ) = ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) | 
						
							| 20 | 19 | fveq2d |  |-  ( j = i -> ( sum^ ` ( n e. ( M ... j ) |-> ( O ` ( E ` n ) ) ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) | 
						
							| 21 | 17 20 | eqeq12d |  |-  ( j = i -> ( ( O ` ( G ` j ) ) = ( sum^ ` ( n e. ( M ... j ) |-> ( O ` ( E ` n ) ) ) ) <-> ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) ) | 
						
							| 22 | 21 | imbi2d |  |-  ( j = i -> ( ( ph -> ( O ` ( G ` j ) ) = ( sum^ ` ( n e. ( M ... j ) |-> ( O ` ( E ` n ) ) ) ) ) <-> ( ph -> ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) ) ) | 
						
							| 23 |  | 2fveq3 |  |-  ( j = ( i + 1 ) -> ( O ` ( G ` j ) ) = ( O ` ( G ` ( i + 1 ) ) ) ) | 
						
							| 24 |  | oveq2 |  |-  ( j = ( i + 1 ) -> ( M ... j ) = ( M ... ( i + 1 ) ) ) | 
						
							| 25 | 24 | mpteq1d |  |-  ( j = ( i + 1 ) -> ( n e. ( M ... j ) |-> ( O ` ( E ` n ) ) ) = ( n e. ( M ... ( i + 1 ) ) |-> ( O ` ( E ` n ) ) ) ) | 
						
							| 26 | 25 | fveq2d |  |-  ( j = ( i + 1 ) -> ( sum^ ` ( n e. ( M ... j ) |-> ( O ` ( E ` n ) ) ) ) = ( sum^ ` ( n e. ( M ... ( i + 1 ) ) |-> ( O ` ( E ` n ) ) ) ) ) | 
						
							| 27 | 23 26 | eqeq12d |  |-  ( j = ( i + 1 ) -> ( ( O ` ( G ` j ) ) = ( sum^ ` ( n e. ( M ... j ) |-> ( O ` ( E ` n ) ) ) ) <-> ( O ` ( G ` ( i + 1 ) ) ) = ( sum^ ` ( n e. ( M ... ( i + 1 ) ) |-> ( O ` ( E ` n ) ) ) ) ) ) | 
						
							| 28 | 27 | imbi2d |  |-  ( j = ( i + 1 ) -> ( ( ph -> ( O ` ( G ` j ) ) = ( sum^ ` ( n e. ( M ... j ) |-> ( O ` ( E ` n ) ) ) ) ) <-> ( ph -> ( O ` ( G ` ( i + 1 ) ) ) = ( sum^ ` ( n e. ( M ... ( i + 1 ) ) |-> ( O ` ( E ` n ) ) ) ) ) ) ) | 
						
							| 29 |  | 2fveq3 |  |-  ( j = N -> ( O ` ( G ` j ) ) = ( O ` ( G ` N ) ) ) | 
						
							| 30 |  | oveq2 |  |-  ( j = N -> ( M ... j ) = ( M ... N ) ) | 
						
							| 31 | 30 | mpteq1d |  |-  ( j = N -> ( n e. ( M ... j ) |-> ( O ` ( E ` n ) ) ) = ( n e. ( M ... N ) |-> ( O ` ( E ` n ) ) ) ) | 
						
							| 32 | 31 | fveq2d |  |-  ( j = N -> ( sum^ ` ( n e. ( M ... j ) |-> ( O ` ( E ` n ) ) ) ) = ( sum^ ` ( n e. ( M ... N ) |-> ( O ` ( E ` n ) ) ) ) ) | 
						
							| 33 | 29 32 | eqeq12d |  |-  ( j = N -> ( ( O ` ( G ` j ) ) = ( sum^ ` ( n e. ( M ... j ) |-> ( O ` ( E ` n ) ) ) ) <-> ( O ` ( G ` N ) ) = ( sum^ ` ( n e. ( M ... N ) |-> ( O ` ( E ` n ) ) ) ) ) ) | 
						
							| 34 | 33 | imbi2d |  |-  ( j = N -> ( ( ph -> ( O ` ( G ` j ) ) = ( sum^ ` ( n e. ( M ... j ) |-> ( O ` ( E ` n ) ) ) ) ) <-> ( ph -> ( O ` ( G ` N ) ) = ( sum^ ` ( n e. ( M ... N ) |-> ( O ` ( E ` n ) ) ) ) ) ) ) | 
						
							| 35 |  | eluzel2 |  |-  ( N e. ( ZZ>= ` M ) -> M e. ZZ ) | 
						
							| 36 | 7 35 | syl |  |-  ( ph -> M e. ZZ ) | 
						
							| 37 |  | fzsn |  |-  ( M e. ZZ -> ( M ... M ) = { M } ) | 
						
							| 38 | 36 37 | syl |  |-  ( ph -> ( M ... M ) = { M } ) | 
						
							| 39 | 38 | mpteq1d |  |-  ( ph -> ( n e. ( M ... M ) |-> ( O ` ( E ` n ) ) ) = ( n e. { M } |-> ( O ` ( E ` n ) ) ) ) | 
						
							| 40 | 39 | fveq2d |  |-  ( ph -> ( sum^ ` ( n e. ( M ... M ) |-> ( O ` ( E ` n ) ) ) ) = ( sum^ ` ( n e. { M } |-> ( O ` ( E ` n ) ) ) ) ) | 
						
							| 41 | 1 | adantr |  |-  ( ( ph /\ n e. { M } ) -> O e. OutMeas ) | 
						
							| 42 |  | eqid |  |-  U. dom O = U. dom O | 
						
							| 43 | 2 | caragenss |  |-  ( O e. OutMeas -> S C_ dom O ) | 
						
							| 44 | 41 43 | syl |  |-  ( ( ph /\ n e. { M } ) -> S C_ dom O ) | 
						
							| 45 | 4 | adantr |  |-  ( ( ph /\ n e. { M } ) -> E : Z --> S ) | 
						
							| 46 |  | elsni |  |-  ( n e. { M } -> n = M ) | 
						
							| 47 | 46 | adantl |  |-  ( ( ph /\ n e. { M } ) -> n = M ) | 
						
							| 48 |  | uzid |  |-  ( M e. ZZ -> M e. ( ZZ>= ` M ) ) | 
						
							| 49 | 36 48 | syl |  |-  ( ph -> M e. ( ZZ>= ` M ) ) | 
						
							| 50 | 49 3 | eleqtrrdi |  |-  ( ph -> M e. Z ) | 
						
							| 51 | 50 | adantr |  |-  ( ( ph /\ n e. { M } ) -> M e. Z ) | 
						
							| 52 | 47 51 | eqeltrd |  |-  ( ( ph /\ n e. { M } ) -> n e. Z ) | 
						
							| 53 | 45 52 | ffvelcdmd |  |-  ( ( ph /\ n e. { M } ) -> ( E ` n ) e. S ) | 
						
							| 54 | 44 53 | sseldd |  |-  ( ( ph /\ n e. { M } ) -> ( E ` n ) e. dom O ) | 
						
							| 55 |  | elssuni |  |-  ( ( E ` n ) e. dom O -> ( E ` n ) C_ U. dom O ) | 
						
							| 56 | 54 55 | syl |  |-  ( ( ph /\ n e. { M } ) -> ( E ` n ) C_ U. dom O ) | 
						
							| 57 | 41 42 56 | omecl |  |-  ( ( ph /\ n e. { M } ) -> ( O ` ( E ` n ) ) e. ( 0 [,] +oo ) ) | 
						
							| 58 |  | eqid |  |-  ( n e. { M } |-> ( O ` ( E ` n ) ) ) = ( n e. { M } |-> ( O ` ( E ` n ) ) ) | 
						
							| 59 | 57 58 | fmptd |  |-  ( ph -> ( n e. { M } |-> ( O ` ( E ` n ) ) ) : { M } --> ( 0 [,] +oo ) ) | 
						
							| 60 | 36 59 | sge0sn |  |-  ( ph -> ( sum^ ` ( n e. { M } |-> ( O ` ( E ` n ) ) ) ) = ( ( n e. { M } |-> ( O ` ( E ` n ) ) ) ` M ) ) | 
						
							| 61 |  | eqidd |  |-  ( ph -> ( n e. { M } |-> ( O ` ( E ` n ) ) ) = ( n e. { M } |-> ( O ` ( E ` n ) ) ) ) | 
						
							| 62 | 38 | iuneq1d |  |-  ( ph -> U_ i e. ( M ... M ) ( E ` i ) = U_ i e. { M } ( E ` i ) ) | 
						
							| 63 |  | fveq2 |  |-  ( i = M -> ( E ` i ) = ( E ` M ) ) | 
						
							| 64 | 63 | iunxsng |  |-  ( M e. Z -> U_ i e. { M } ( E ` i ) = ( E ` M ) ) | 
						
							| 65 | 50 64 | syl |  |-  ( ph -> U_ i e. { M } ( E ` i ) = ( E ` M ) ) | 
						
							| 66 |  | eqidd |  |-  ( ph -> ( E ` M ) = ( E ` M ) ) | 
						
							| 67 | 62 65 66 | 3eqtrrd |  |-  ( ph -> ( E ` M ) = U_ i e. ( M ... M ) ( E ` i ) ) | 
						
							| 68 | 67 | adantr |  |-  ( ( ph /\ n = M ) -> ( E ` M ) = U_ i e. ( M ... M ) ( E ` i ) ) | 
						
							| 69 |  | fveq2 |  |-  ( n = M -> ( E ` n ) = ( E ` M ) ) | 
						
							| 70 | 69 | adantl |  |-  ( ( ph /\ n = M ) -> ( E ` n ) = ( E ` M ) ) | 
						
							| 71 |  | oveq2 |  |-  ( n = M -> ( M ... n ) = ( M ... M ) ) | 
						
							| 72 | 71 | iuneq1d |  |-  ( n = M -> U_ i e. ( M ... n ) ( E ` i ) = U_ i e. ( M ... M ) ( E ` i ) ) | 
						
							| 73 |  | ovex |  |-  ( M ... M ) e. _V | 
						
							| 74 |  | fvex |  |-  ( E ` i ) e. _V | 
						
							| 75 | 73 74 | iunex |  |-  U_ i e. ( M ... M ) ( E ` i ) e. _V | 
						
							| 76 | 75 | a1i |  |-  ( ph -> U_ i e. ( M ... M ) ( E ` i ) e. _V ) | 
						
							| 77 | 6 72 50 76 | fvmptd3 |  |-  ( ph -> ( G ` M ) = U_ i e. ( M ... M ) ( E ` i ) ) | 
						
							| 78 | 77 | adantr |  |-  ( ( ph /\ n = M ) -> ( G ` M ) = U_ i e. ( M ... M ) ( E ` i ) ) | 
						
							| 79 | 68 70 78 | 3eqtr4d |  |-  ( ( ph /\ n = M ) -> ( E ` n ) = ( G ` M ) ) | 
						
							| 80 | 79 | fveq2d |  |-  ( ( ph /\ n = M ) -> ( O ` ( E ` n ) ) = ( O ` ( G ` M ) ) ) | 
						
							| 81 |  | snidg |  |-  ( M e. Z -> M e. { M } ) | 
						
							| 82 | 50 81 | syl |  |-  ( ph -> M e. { M } ) | 
						
							| 83 |  | fvexd |  |-  ( ph -> ( O ` ( G ` M ) ) e. _V ) | 
						
							| 84 | 61 80 82 83 | fvmptd |  |-  ( ph -> ( ( n e. { M } |-> ( O ` ( E ` n ) ) ) ` M ) = ( O ` ( G ` M ) ) ) | 
						
							| 85 | 40 60 84 | 3eqtrrd |  |-  ( ph -> ( O ` ( G ` M ) ) = ( sum^ ` ( n e. ( M ... M ) |-> ( O ` ( E ` n ) ) ) ) ) | 
						
							| 86 | 85 | a1i |  |-  ( N e. ( ZZ>= ` M ) -> ( ph -> ( O ` ( G ` M ) ) = ( sum^ ` ( n e. ( M ... M ) |-> ( O ` ( E ` n ) ) ) ) ) ) | 
						
							| 87 |  | simp3 |  |-  ( ( i e. ( M ..^ N ) /\ ( ph -> ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) /\ ph ) -> ph ) | 
						
							| 88 |  | simp1 |  |-  ( ( i e. ( M ..^ N ) /\ ( ph -> ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) /\ ph ) -> i e. ( M ..^ N ) ) | 
						
							| 89 |  | id |  |-  ( ( ph -> ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) -> ( ph -> ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) ) | 
						
							| 90 | 89 | imp |  |-  ( ( ( ph -> ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) /\ ph ) -> ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) | 
						
							| 91 | 90 | 3adant1 |  |-  ( ( i e. ( M ..^ N ) /\ ( ph -> ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) /\ ph ) -> ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) | 
						
							| 92 |  | elfzoel1 |  |-  ( i e. ( M ..^ N ) -> M e. ZZ ) | 
						
							| 93 |  | elfzoelz |  |-  ( i e. ( M ..^ N ) -> i e. ZZ ) | 
						
							| 94 | 93 | peano2zd |  |-  ( i e. ( M ..^ N ) -> ( i + 1 ) e. ZZ ) | 
						
							| 95 | 92 | zred |  |-  ( i e. ( M ..^ N ) -> M e. RR ) | 
						
							| 96 | 94 | zred |  |-  ( i e. ( M ..^ N ) -> ( i + 1 ) e. RR ) | 
						
							| 97 | 93 | zred |  |-  ( i e. ( M ..^ N ) -> i e. RR ) | 
						
							| 98 |  | elfzole1 |  |-  ( i e. ( M ..^ N ) -> M <_ i ) | 
						
							| 99 | 97 | ltp1d |  |-  ( i e. ( M ..^ N ) -> i < ( i + 1 ) ) | 
						
							| 100 | 95 97 96 98 99 | lelttrd |  |-  ( i e. ( M ..^ N ) -> M < ( i + 1 ) ) | 
						
							| 101 | 95 96 100 | ltled |  |-  ( i e. ( M ..^ N ) -> M <_ ( i + 1 ) ) | 
						
							| 102 |  | leid |  |-  ( ( i + 1 ) e. RR -> ( i + 1 ) <_ ( i + 1 ) ) | 
						
							| 103 | 96 102 | syl |  |-  ( i e. ( M ..^ N ) -> ( i + 1 ) <_ ( i + 1 ) ) | 
						
							| 104 | 92 94 94 101 103 | elfzd |  |-  ( i e. ( M ..^ N ) -> ( i + 1 ) e. ( M ... ( i + 1 ) ) ) | 
						
							| 105 | 104 | adantl |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( i + 1 ) e. ( M ... ( i + 1 ) ) ) | 
						
							| 106 |  | fveq2 |  |-  ( j = ( i + 1 ) -> ( E ` j ) = ( E ` ( i + 1 ) ) ) | 
						
							| 107 | 106 | ssiun2s |  |-  ( ( i + 1 ) e. ( M ... ( i + 1 ) ) -> ( E ` ( i + 1 ) ) C_ U_ j e. ( M ... ( i + 1 ) ) ( E ` j ) ) | 
						
							| 108 | 105 107 | syl |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( E ` ( i + 1 ) ) C_ U_ j e. ( M ... ( i + 1 ) ) ( E ` j ) ) | 
						
							| 109 |  | fveq2 |  |-  ( i = j -> ( E ` i ) = ( E ` j ) ) | 
						
							| 110 | 109 | cbviunv |  |-  U_ i e. ( M ... n ) ( E ` i ) = U_ j e. ( M ... n ) ( E ` j ) | 
						
							| 111 | 110 | mpteq2i |  |-  ( n e. Z |-> U_ i e. ( M ... n ) ( E ` i ) ) = ( n e. Z |-> U_ j e. ( M ... n ) ( E ` j ) ) | 
						
							| 112 | 6 111 | eqtri |  |-  G = ( n e. Z |-> U_ j e. ( M ... n ) ( E ` j ) ) | 
						
							| 113 |  | oveq2 |  |-  ( n = ( i + 1 ) -> ( M ... n ) = ( M ... ( i + 1 ) ) ) | 
						
							| 114 | 113 | iuneq1d |  |-  ( n = ( i + 1 ) -> U_ j e. ( M ... n ) ( E ` j ) = U_ j e. ( M ... ( i + 1 ) ) ( E ` j ) ) | 
						
							| 115 | 36 | adantr |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> M e. ZZ ) | 
						
							| 116 | 93 | adantl |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> i e. ZZ ) | 
						
							| 117 | 116 | peano2zd |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( i + 1 ) e. ZZ ) | 
						
							| 118 | 115 | zred |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> M e. RR ) | 
						
							| 119 | 117 | zred |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( i + 1 ) e. RR ) | 
						
							| 120 | 116 | zred |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> i e. RR ) | 
						
							| 121 | 98 | adantl |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> M <_ i ) | 
						
							| 122 | 120 | ltp1d |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> i < ( i + 1 ) ) | 
						
							| 123 | 118 120 119 121 122 | lelttrd |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> M < ( i + 1 ) ) | 
						
							| 124 | 118 119 123 | ltled |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> M <_ ( i + 1 ) ) | 
						
							| 125 | 115 117 124 | 3jca |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( M e. ZZ /\ ( i + 1 ) e. ZZ /\ M <_ ( i + 1 ) ) ) | 
						
							| 126 |  | eluz2 |  |-  ( ( i + 1 ) e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ ( i + 1 ) e. ZZ /\ M <_ ( i + 1 ) ) ) | 
						
							| 127 | 125 126 | sylibr |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( i + 1 ) e. ( ZZ>= ` M ) ) | 
						
							| 128 | 3 | eqcomi |  |-  ( ZZ>= ` M ) = Z | 
						
							| 129 | 127 128 | eleqtrdi |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( i + 1 ) e. Z ) | 
						
							| 130 |  | ovex |  |-  ( M ... ( i + 1 ) ) e. _V | 
						
							| 131 |  | fvex |  |-  ( E ` j ) e. _V | 
						
							| 132 | 130 131 | iunex |  |-  U_ j e. ( M ... ( i + 1 ) ) ( E ` j ) e. _V | 
						
							| 133 | 132 | a1i |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> U_ j e. ( M ... ( i + 1 ) ) ( E ` j ) e. _V ) | 
						
							| 134 | 112 114 129 133 | fvmptd3 |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( G ` ( i + 1 ) ) = U_ j e. ( M ... ( i + 1 ) ) ( E ` j ) ) | 
						
							| 135 | 134 | eqcomd |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> U_ j e. ( M ... ( i + 1 ) ) ( E ` j ) = ( G ` ( i + 1 ) ) ) | 
						
							| 136 | 108 135 | sseqtrd |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( E ` ( i + 1 ) ) C_ ( G ` ( i + 1 ) ) ) | 
						
							| 137 |  | sseqin2 |  |-  ( ( E ` ( i + 1 ) ) C_ ( G ` ( i + 1 ) ) <-> ( ( G ` ( i + 1 ) ) i^i ( E ` ( i + 1 ) ) ) = ( E ` ( i + 1 ) ) ) | 
						
							| 138 | 137 | biimpi |  |-  ( ( E ` ( i + 1 ) ) C_ ( G ` ( i + 1 ) ) -> ( ( G ` ( i + 1 ) ) i^i ( E ` ( i + 1 ) ) ) = ( E ` ( i + 1 ) ) ) | 
						
							| 139 | 136 138 | syl |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( ( G ` ( i + 1 ) ) i^i ( E ` ( i + 1 ) ) ) = ( E ` ( i + 1 ) ) ) | 
						
							| 140 | 139 | fveq2d |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( O ` ( ( G ` ( i + 1 ) ) i^i ( E ` ( i + 1 ) ) ) ) = ( O ` ( E ` ( i + 1 ) ) ) ) | 
						
							| 141 |  | nfcv |  |-  F/_ j ( E ` ( i + 1 ) ) | 
						
							| 142 |  | elfzouz |  |-  ( i e. ( M ..^ N ) -> i e. ( ZZ>= ` M ) ) | 
						
							| 143 | 142 | adantl |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> i e. ( ZZ>= ` M ) ) | 
						
							| 144 | 141 143 106 | iunp1 |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> U_ j e. ( M ... ( i + 1 ) ) ( E ` j ) = ( U_ j e. ( M ... i ) ( E ` j ) u. ( E ` ( i + 1 ) ) ) ) | 
						
							| 145 | 134 144 | eqtrd |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( G ` ( i + 1 ) ) = ( U_ j e. ( M ... i ) ( E ` j ) u. ( E ` ( i + 1 ) ) ) ) | 
						
							| 146 | 145 | difeq1d |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( ( G ` ( i + 1 ) ) \ ( E ` ( i + 1 ) ) ) = ( ( U_ j e. ( M ... i ) ( E ` j ) u. ( E ` ( i + 1 ) ) ) \ ( E ` ( i + 1 ) ) ) ) | 
						
							| 147 |  | fveq2 |  |-  ( n = j -> ( E ` n ) = ( E ` j ) ) | 
						
							| 148 | 147 | cbvdisjv |  |-  ( Disj_ n e. Z ( E ` n ) <-> Disj_ j e. Z ( E ` j ) ) | 
						
							| 149 | 5 148 | sylib |  |-  ( ph -> Disj_ j e. Z ( E ` j ) ) | 
						
							| 150 | 149 | adantr |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> Disj_ j e. Z ( E ` j ) ) | 
						
							| 151 |  | fzssuz |  |-  ( M ... i ) C_ ( ZZ>= ` M ) | 
						
							| 152 | 151 128 | sseqtri |  |-  ( M ... i ) C_ Z | 
						
							| 153 | 152 | a1i |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( M ... i ) C_ Z ) | 
						
							| 154 |  | fzp1nel |  |-  -. ( i + 1 ) e. ( M ... i ) | 
						
							| 155 | 154 | a1i |  |-  ( i e. ( M ..^ N ) -> -. ( i + 1 ) e. ( M ... i ) ) | 
						
							| 156 | 155 | adantl |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> -. ( i + 1 ) e. ( M ... i ) ) | 
						
							| 157 | 129 156 | eldifd |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( i + 1 ) e. ( Z \ ( M ... i ) ) ) | 
						
							| 158 | 150 153 157 106 | disjiun2 |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( U_ j e. ( M ... i ) ( E ` j ) i^i ( E ` ( i + 1 ) ) ) = (/) ) | 
						
							| 159 |  | undif4 |  |-  ( ( U_ j e. ( M ... i ) ( E ` j ) i^i ( E ` ( i + 1 ) ) ) = (/) -> ( U_ j e. ( M ... i ) ( E ` j ) u. ( ( E ` ( i + 1 ) ) \ ( E ` ( i + 1 ) ) ) ) = ( ( U_ j e. ( M ... i ) ( E ` j ) u. ( E ` ( i + 1 ) ) ) \ ( E ` ( i + 1 ) ) ) ) | 
						
							| 160 | 158 159 | syl |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( U_ j e. ( M ... i ) ( E ` j ) u. ( ( E ` ( i + 1 ) ) \ ( E ` ( i + 1 ) ) ) ) = ( ( U_ j e. ( M ... i ) ( E ` j ) u. ( E ` ( i + 1 ) ) ) \ ( E ` ( i + 1 ) ) ) ) | 
						
							| 161 | 160 | eqcomd |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( ( U_ j e. ( M ... i ) ( E ` j ) u. ( E ` ( i + 1 ) ) ) \ ( E ` ( i + 1 ) ) ) = ( U_ j e. ( M ... i ) ( E ` j ) u. ( ( E ` ( i + 1 ) ) \ ( E ` ( i + 1 ) ) ) ) ) | 
						
							| 162 |  | simpl |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ph ) | 
						
							| 163 | 143 128 | eleqtrdi |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> i e. Z ) | 
						
							| 164 | 112 | a1i |  |-  ( ( ph /\ i e. Z ) -> G = ( n e. Z |-> U_ j e. ( M ... n ) ( E ` j ) ) ) | 
						
							| 165 |  | simpr |  |-  ( ( ( ph /\ i e. Z ) /\ n = i ) -> n = i ) | 
						
							| 166 | 165 | oveq2d |  |-  ( ( ( ph /\ i e. Z ) /\ n = i ) -> ( M ... n ) = ( M ... i ) ) | 
						
							| 167 | 166 | iuneq1d |  |-  ( ( ( ph /\ i e. Z ) /\ n = i ) -> U_ j e. ( M ... n ) ( E ` j ) = U_ j e. ( M ... i ) ( E ` j ) ) | 
						
							| 168 |  | simpr |  |-  ( ( ph /\ i e. Z ) -> i e. Z ) | 
						
							| 169 |  | ovex |  |-  ( M ... i ) e. _V | 
						
							| 170 | 169 131 | iunex |  |-  U_ j e. ( M ... i ) ( E ` j ) e. _V | 
						
							| 171 | 170 | a1i |  |-  ( ( ph /\ i e. Z ) -> U_ j e. ( M ... i ) ( E ` j ) e. _V ) | 
						
							| 172 | 164 167 168 171 | fvmptd |  |-  ( ( ph /\ i e. Z ) -> ( G ` i ) = U_ j e. ( M ... i ) ( E ` j ) ) | 
						
							| 173 | 162 163 172 | syl2anc |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( G ` i ) = U_ j e. ( M ... i ) ( E ` j ) ) | 
						
							| 174 | 173 | eqcomd |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> U_ j e. ( M ... i ) ( E ` j ) = ( G ` i ) ) | 
						
							| 175 |  | difid |  |-  ( ( E ` ( i + 1 ) ) \ ( E ` ( i + 1 ) ) ) = (/) | 
						
							| 176 | 175 | a1i |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( ( E ` ( i + 1 ) ) \ ( E ` ( i + 1 ) ) ) = (/) ) | 
						
							| 177 | 174 176 | uneq12d |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( U_ j e. ( M ... i ) ( E ` j ) u. ( ( E ` ( i + 1 ) ) \ ( E ` ( i + 1 ) ) ) ) = ( ( G ` i ) u. (/) ) ) | 
						
							| 178 |  | un0 |  |-  ( ( G ` i ) u. (/) ) = ( G ` i ) | 
						
							| 179 | 178 | a1i |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( ( G ` i ) u. (/) ) = ( G ` i ) ) | 
						
							| 180 | 177 179 | eqtrd |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( U_ j e. ( M ... i ) ( E ` j ) u. ( ( E ` ( i + 1 ) ) \ ( E ` ( i + 1 ) ) ) ) = ( G ` i ) ) | 
						
							| 181 | 146 161 180 | 3eqtrd |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( ( G ` ( i + 1 ) ) \ ( E ` ( i + 1 ) ) ) = ( G ` i ) ) | 
						
							| 182 | 181 | fveq2d |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( O ` ( ( G ` ( i + 1 ) ) \ ( E ` ( i + 1 ) ) ) ) = ( O ` ( G ` i ) ) ) | 
						
							| 183 | 140 182 | oveq12d |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( ( O ` ( ( G ` ( i + 1 ) ) i^i ( E ` ( i + 1 ) ) ) ) +e ( O ` ( ( G ` ( i + 1 ) ) \ ( E ` ( i + 1 ) ) ) ) ) = ( ( O ` ( E ` ( i + 1 ) ) ) +e ( O ` ( G ` i ) ) ) ) | 
						
							| 184 | 183 | 3adant3 |  |-  ( ( ph /\ i e. ( M ..^ N ) /\ ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) -> ( ( O ` ( ( G ` ( i + 1 ) ) i^i ( E ` ( i + 1 ) ) ) ) +e ( O ` ( ( G ` ( i + 1 ) ) \ ( E ` ( i + 1 ) ) ) ) ) = ( ( O ` ( E ` ( i + 1 ) ) ) +e ( O ` ( G ` i ) ) ) ) | 
						
							| 185 | 1 | adantr |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> O e. OutMeas ) | 
						
							| 186 | 4 | adantr |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> E : Z --> S ) | 
						
							| 187 | 186 129 | ffvelcdmd |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( E ` ( i + 1 ) ) e. S ) | 
						
							| 188 |  | simpll |  |-  ( ( ( ph /\ i e. ( M ..^ N ) ) /\ j e. ( M ... ( i + 1 ) ) ) -> ph ) | 
						
							| 189 | 92 | adantr |  |-  ( ( i e. ( M ..^ N ) /\ j e. ( M ... ( i + 1 ) ) ) -> M e. ZZ ) | 
						
							| 190 |  | elfzelz |  |-  ( j e. ( M ... ( i + 1 ) ) -> j e. ZZ ) | 
						
							| 191 | 190 | adantl |  |-  ( ( i e. ( M ..^ N ) /\ j e. ( M ... ( i + 1 ) ) ) -> j e. ZZ ) | 
						
							| 192 |  | elfzle1 |  |-  ( j e. ( M ... ( i + 1 ) ) -> M <_ j ) | 
						
							| 193 | 192 | adantl |  |-  ( ( i e. ( M ..^ N ) /\ j e. ( M ... ( i + 1 ) ) ) -> M <_ j ) | 
						
							| 194 | 189 191 193 | 3jca |  |-  ( ( i e. ( M ..^ N ) /\ j e. ( M ... ( i + 1 ) ) ) -> ( M e. ZZ /\ j e. ZZ /\ M <_ j ) ) | 
						
							| 195 |  | eluz2 |  |-  ( j e. ( ZZ>= ` M ) <-> ( M e. ZZ /\ j e. ZZ /\ M <_ j ) ) | 
						
							| 196 | 194 195 | sylibr |  |-  ( ( i e. ( M ..^ N ) /\ j e. ( M ... ( i + 1 ) ) ) -> j e. ( ZZ>= ` M ) ) | 
						
							| 197 | 196 128 | eleqtrdi |  |-  ( ( i e. ( M ..^ N ) /\ j e. ( M ... ( i + 1 ) ) ) -> j e. Z ) | 
						
							| 198 | 197 | adantll |  |-  ( ( ( ph /\ i e. ( M ..^ N ) ) /\ j e. ( M ... ( i + 1 ) ) ) -> j e. Z ) | 
						
							| 199 | 1 43 | syl |  |-  ( ph -> S C_ dom O ) | 
						
							| 200 | 199 | adantr |  |-  ( ( ph /\ j e. Z ) -> S C_ dom O ) | 
						
							| 201 | 4 | ffvelcdmda |  |-  ( ( ph /\ j e. Z ) -> ( E ` j ) e. S ) | 
						
							| 202 | 200 201 | sseldd |  |-  ( ( ph /\ j e. Z ) -> ( E ` j ) e. dom O ) | 
						
							| 203 |  | elssuni |  |-  ( ( E ` j ) e. dom O -> ( E ` j ) C_ U. dom O ) | 
						
							| 204 | 202 203 | syl |  |-  ( ( ph /\ j e. Z ) -> ( E ` j ) C_ U. dom O ) | 
						
							| 205 | 188 198 204 | syl2anc |  |-  ( ( ( ph /\ i e. ( M ..^ N ) ) /\ j e. ( M ... ( i + 1 ) ) ) -> ( E ` j ) C_ U. dom O ) | 
						
							| 206 | 205 | ralrimiva |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> A. j e. ( M ... ( i + 1 ) ) ( E ` j ) C_ U. dom O ) | 
						
							| 207 |  | iunss |  |-  ( U_ j e. ( M ... ( i + 1 ) ) ( E ` j ) C_ U. dom O <-> A. j e. ( M ... ( i + 1 ) ) ( E ` j ) C_ U. dom O ) | 
						
							| 208 | 206 207 | sylibr |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> U_ j e. ( M ... ( i + 1 ) ) ( E ` j ) C_ U. dom O ) | 
						
							| 209 | 134 208 | eqsstrd |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( G ` ( i + 1 ) ) C_ U. dom O ) | 
						
							| 210 | 185 2 42 187 209 | caragensplit |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( ( O ` ( ( G ` ( i + 1 ) ) i^i ( E ` ( i + 1 ) ) ) ) +e ( O ` ( ( G ` ( i + 1 ) ) \ ( E ` ( i + 1 ) ) ) ) ) = ( O ` ( G ` ( i + 1 ) ) ) ) | 
						
							| 211 | 210 | eqcomd |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( O ` ( G ` ( i + 1 ) ) ) = ( ( O ` ( ( G ` ( i + 1 ) ) i^i ( E ` ( i + 1 ) ) ) ) +e ( O ` ( ( G ` ( i + 1 ) ) \ ( E ` ( i + 1 ) ) ) ) ) ) | 
						
							| 212 | 211 | 3adant3 |  |-  ( ( ph /\ i e. ( M ..^ N ) /\ ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) -> ( O ` ( G ` ( i + 1 ) ) ) = ( ( O ` ( ( G ` ( i + 1 ) ) i^i ( E ` ( i + 1 ) ) ) ) +e ( O ` ( ( G ` ( i + 1 ) ) \ ( E ` ( i + 1 ) ) ) ) ) ) | 
						
							| 213 | 185 | adantr |  |-  ( ( ( ph /\ i e. ( M ..^ N ) ) /\ n e. ( M ... ( i + 1 ) ) ) -> O e. OutMeas ) | 
						
							| 214 | 162 | adantr |  |-  ( ( ( ph /\ i e. ( M ..^ N ) ) /\ n e. ( M ... ( i + 1 ) ) ) -> ph ) | 
						
							| 215 |  | elfzuz |  |-  ( n e. ( M ... ( i + 1 ) ) -> n e. ( ZZ>= ` M ) ) | 
						
							| 216 | 215 128 | eleqtrdi |  |-  ( n e. ( M ... ( i + 1 ) ) -> n e. Z ) | 
						
							| 217 | 216 | adantl |  |-  ( ( ( ph /\ i e. ( M ..^ N ) ) /\ n e. ( M ... ( i + 1 ) ) ) -> n e. Z ) | 
						
							| 218 | 4 199 | fssd |  |-  ( ph -> E : Z --> dom O ) | 
						
							| 219 | 218 | ffvelcdmda |  |-  ( ( ph /\ n e. Z ) -> ( E ` n ) e. dom O ) | 
						
							| 220 | 219 55 | syl |  |-  ( ( ph /\ n e. Z ) -> ( E ` n ) C_ U. dom O ) | 
						
							| 221 | 214 217 220 | syl2anc |  |-  ( ( ( ph /\ i e. ( M ..^ N ) ) /\ n e. ( M ... ( i + 1 ) ) ) -> ( E ` n ) C_ U. dom O ) | 
						
							| 222 | 213 42 221 | omecl |  |-  ( ( ( ph /\ i e. ( M ..^ N ) ) /\ n e. ( M ... ( i + 1 ) ) ) -> ( O ` ( E ` n ) ) e. ( 0 [,] +oo ) ) | 
						
							| 223 |  | 2fveq3 |  |-  ( n = ( i + 1 ) -> ( O ` ( E ` n ) ) = ( O ` ( E ` ( i + 1 ) ) ) ) | 
						
							| 224 | 143 222 223 | sge0p1 |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( sum^ ` ( n e. ( M ... ( i + 1 ) ) |-> ( O ` ( E ` n ) ) ) ) = ( ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) +e ( O ` ( E ` ( i + 1 ) ) ) ) ) | 
						
							| 225 | 224 | 3adant3 |  |-  ( ( ph /\ i e. ( M ..^ N ) /\ ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) -> ( sum^ ` ( n e. ( M ... ( i + 1 ) ) |-> ( O ` ( E ` n ) ) ) ) = ( ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) +e ( O ` ( E ` ( i + 1 ) ) ) ) ) | 
						
							| 226 |  | id |  |-  ( ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) -> ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) | 
						
							| 227 | 226 | eqcomd |  |-  ( ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) -> ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) = ( O ` ( G ` i ) ) ) | 
						
							| 228 | 227 | oveq1d |  |-  ( ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) -> ( ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) +e ( O ` ( E ` ( i + 1 ) ) ) ) = ( ( O ` ( G ` i ) ) +e ( O ` ( E ` ( i + 1 ) ) ) ) ) | 
						
							| 229 | 228 | 3ad2ant3 |  |-  ( ( ph /\ i e. ( M ..^ N ) /\ ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) -> ( ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) +e ( O ` ( E ` ( i + 1 ) ) ) ) = ( ( O ` ( G ` i ) ) +e ( O ` ( E ` ( i + 1 ) ) ) ) ) | 
						
							| 230 |  | simpl |  |-  ( ( ph /\ j e. ( M ... i ) ) -> ph ) | 
						
							| 231 | 152 | sseli |  |-  ( j e. ( M ... i ) -> j e. Z ) | 
						
							| 232 | 231 | adantl |  |-  ( ( ph /\ j e. ( M ... i ) ) -> j e. Z ) | 
						
							| 233 | 230 232 204 | syl2anc |  |-  ( ( ph /\ j e. ( M ... i ) ) -> ( E ` j ) C_ U. dom O ) | 
						
							| 234 | 233 | adantlr |  |-  ( ( ( ph /\ i e. Z ) /\ j e. ( M ... i ) ) -> ( E ` j ) C_ U. dom O ) | 
						
							| 235 | 234 | ralrimiva |  |-  ( ( ph /\ i e. Z ) -> A. j e. ( M ... i ) ( E ` j ) C_ U. dom O ) | 
						
							| 236 |  | iunss |  |-  ( U_ j e. ( M ... i ) ( E ` j ) C_ U. dom O <-> A. j e. ( M ... i ) ( E ` j ) C_ U. dom O ) | 
						
							| 237 | 235 236 | sylibr |  |-  ( ( ph /\ i e. Z ) -> U_ j e. ( M ... i ) ( E ` j ) C_ U. dom O ) | 
						
							| 238 | 172 237 | eqsstrd |  |-  ( ( ph /\ i e. Z ) -> ( G ` i ) C_ U. dom O ) | 
						
							| 239 | 162 163 238 | syl2anc |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( G ` i ) C_ U. dom O ) | 
						
							| 240 | 185 42 239 | omexrcl |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( O ` ( G ` i ) ) e. RR* ) | 
						
							| 241 | 108 208 | sstrd |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( E ` ( i + 1 ) ) C_ U. dom O ) | 
						
							| 242 | 185 42 241 | omexrcl |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( O ` ( E ` ( i + 1 ) ) ) e. RR* ) | 
						
							| 243 | 240 242 | xaddcomd |  |-  ( ( ph /\ i e. ( M ..^ N ) ) -> ( ( O ` ( G ` i ) ) +e ( O ` ( E ` ( i + 1 ) ) ) ) = ( ( O ` ( E ` ( i + 1 ) ) ) +e ( O ` ( G ` i ) ) ) ) | 
						
							| 244 | 243 | 3adant3 |  |-  ( ( ph /\ i e. ( M ..^ N ) /\ ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) -> ( ( O ` ( G ` i ) ) +e ( O ` ( E ` ( i + 1 ) ) ) ) = ( ( O ` ( E ` ( i + 1 ) ) ) +e ( O ` ( G ` i ) ) ) ) | 
						
							| 245 | 225 229 244 | 3eqtrd |  |-  ( ( ph /\ i e. ( M ..^ N ) /\ ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) -> ( sum^ ` ( n e. ( M ... ( i + 1 ) ) |-> ( O ` ( E ` n ) ) ) ) = ( ( O ` ( E ` ( i + 1 ) ) ) +e ( O ` ( G ` i ) ) ) ) | 
						
							| 246 | 184 212 245 | 3eqtr4d |  |-  ( ( ph /\ i e. ( M ..^ N ) /\ ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) -> ( O ` ( G ` ( i + 1 ) ) ) = ( sum^ ` ( n e. ( M ... ( i + 1 ) ) |-> ( O ` ( E ` n ) ) ) ) ) | 
						
							| 247 | 87 88 91 246 | syl3anc |  |-  ( ( i e. ( M ..^ N ) /\ ( ph -> ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) /\ ph ) -> ( O ` ( G ` ( i + 1 ) ) ) = ( sum^ ` ( n e. ( M ... ( i + 1 ) ) |-> ( O ` ( E ` n ) ) ) ) ) | 
						
							| 248 | 247 | 3exp |  |-  ( i e. ( M ..^ N ) -> ( ( ph -> ( O ` ( G ` i ) ) = ( sum^ ` ( n e. ( M ... i ) |-> ( O ` ( E ` n ) ) ) ) ) -> ( ph -> ( O ` ( G ` ( i + 1 ) ) ) = ( sum^ ` ( n e. ( M ... ( i + 1 ) ) |-> ( O ` ( E ` n ) ) ) ) ) ) ) | 
						
							| 249 | 16 22 28 34 86 248 | fzind2 |  |-  ( N e. ( M ... N ) -> ( ph -> ( O ` ( G ` N ) ) = ( sum^ ` ( n e. ( M ... N ) |-> ( O ` ( E ` n ) ) ) ) ) ) | 
						
							| 250 | 9 10 249 | sylc |  |-  ( ph -> ( O ` ( G ` N ) ) = ( sum^ ` ( n e. ( M ... N ) |-> ( O ` ( E ` n ) ) ) ) ) |