Metamath Proof Explorer


Theorem caratheodorylem2

Description: Caratheodory's construction is sigma-additive. Main part of Step (e) in the proof of Theorem 113C of Fremlin1 p. 21. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses caratheodorylem2.o φ O OutMeas
caratheodorylem2.x X = dom O
caratheodorylem2.s S = CaraGen O
caratheodorylem2.e φ E : S
caratheodorylem2.5 φ Disj n E n
caratheodorylem2.g G = k n = 1 k E n
Assertion caratheodorylem2 φ O n E n = sum^ n O E n

Proof

Step Hyp Ref Expression
1 caratheodorylem2.o φ O OutMeas
2 caratheodorylem2.x X = dom O
3 caratheodorylem2.s S = CaraGen O
4 caratheodorylem2.e φ E : S
5 caratheodorylem2.5 φ Disj n E n
6 caratheodorylem2.g G = k n = 1 k E n
7 3 caragenss O OutMeas S dom O
8 1 7 syl φ S dom O
9 8 adantr φ n S dom O
10 4 ffvelrnda φ n E n S
11 9 10 sseldd φ n E n dom O
12 elssuni E n dom O E n dom O
13 11 12 syl φ n E n dom O
14 13 2 sseqtrrdi φ n E n X
15 14 ralrimiva φ n E n X
16 iunss n E n X n E n X
17 15 16 sylibr φ n E n X
18 1 2 17 omexrcl φ O n E n *
19 nnex V
20 19 a1i φ V
21 1 adantr φ n O OutMeas
22 21 2 14 omecl φ n O E n 0 +∞
23 eqid n O E n = n O E n
24 22 23 fmptd φ n O E n : 0 +∞
25 20 24 sge0xrcl φ sum^ n O E n *
26 nfv n φ
27 nfcv _ n E
28 nnuz = 1
29 1 2 3 caragensspw φ S 𝒫 X
30 4 29 fssd φ E : 𝒫 X
31 26 27 1 2 28 30 omeiunle φ O n E n sum^ n O E n
32 elpwinss x 𝒫 Fin x
33 32 resmptd x 𝒫 Fin n O E n x = n x O E n
34 33 fveq2d x 𝒫 Fin sum^ n O E n x = sum^ n x O E n
35 34 adantl φ x 𝒫 Fin sum^ n O E n x = sum^ n x O E n
36 1zzd φ x 𝒫 Fin 1
37 32 adantl φ x 𝒫 Fin x
38 elinel2 x 𝒫 Fin x Fin
39 38 adantl φ x 𝒫 Fin x Fin
40 36 28 37 39 uzfissfz φ x 𝒫 Fin k x 1 k
41 vex x V
42 41 a1i φ x 1 k x V
43 1 ad2antrr φ x 1 k n x O OutMeas
44 30 ad2antrr φ x 1 k n x E : 𝒫 X
45 fz1ssnn 1 k
46 ssel2 x 1 k n x n 1 k
47 45 46 sselid x 1 k n x n
48 47 adantll φ x 1 k n x n
49 44 48 ffvelrnd φ x 1 k n x E n 𝒫 X
50 elpwi E n 𝒫 X E n X
51 49 50 syl φ x 1 k n x E n X
52 43 2 51 omecl φ x 1 k n x O E n 0 +∞
53 eqid n x O E n = n x O E n
54 52 53 fmptd φ x 1 k n x O E n : x 0 +∞
55 42 54 sge0xrcl φ x 1 k sum^ n x O E n *
56 55 3adant2 φ k x 1 k sum^ n x O E n *
57 ovex 1 k V
58 57 a1i φ 1 k V
59 elfznn n 1 k n
60 59 22 sylan2 φ n 1 k O E n 0 +∞
61 eqid n 1 k O E n = n 1 k O E n
62 60 61 fmptd φ n 1 k O E n : 1 k 0 +∞
63 58 62 sge0xrcl φ sum^ n 1 k O E n *
64 63 3ad2ant1 φ k x 1 k sum^ n 1 k O E n *
65 18 3ad2ant1 φ k x 1 k O n E n *
66 57 a1i φ k x 1 k 1 k V
67 simpl1 φ k x 1 k n 1 k φ
68 59 adantl φ k x 1 k n 1 k n
69 67 68 22 syl2anc φ k x 1 k n 1 k O E n 0 +∞
70 simp3 φ k x 1 k x 1 k
71 66 69 70 sge0lessmpt φ k x 1 k sum^ n x O E n sum^ n 1 k O E n
72 1 adantr φ k O OutMeas
73 4 adantr φ k E : S
74 5 adantr φ k Disj n E n
75 nfiu1 _ n n = 1 k E n
76 nfcv _ k m = 1 n E m
77 fveq2 n = m E n = E m
78 77 cbviunv n = 1 k E n = m = 1 k E m
79 78 a1i k = n n = 1 k E n = m = 1 k E m
80 oveq2 k = n 1 k = 1 n
81 80 iuneq1d k = n m = 1 k E m = m = 1 n E m
82 79 81 eqtrd k = n n = 1 k E n = m = 1 n E m
83 75 76 82 cbvmpt k n = 1 k E n = n m = 1 n E m
84 6 83 eqtri G = n m = 1 n E m
85 id k k
86 85 28 eleqtrdi k k 1
87 86 adantl φ k k 1
88 72 3 28 73 74 84 87 caratheodorylem1 φ k O G k = sum^ n 1 k O E n
89 88 eqcomd φ k sum^ n 1 k O E n = O G k
90 17 adantr φ k n E n X
91 fvex E n V
92 57 91 iunex n = 1 k E n V
93 6 fvmpt2 k n = 1 k E n V G k = n = 1 k E n
94 85 92 93 sylancl k G k = n = 1 k E n
95 45 a1i k 1 k
96 iunss1 1 k n = 1 k E n n E n
97 95 96 syl k n = 1 k E n n E n
98 94 97 eqsstrd k G k n E n
99 98 adantl φ k G k n E n
100 72 2 90 99 omessle φ k O G k O n E n
101 89 100 eqbrtrd φ k sum^ n 1 k O E n O n E n
102 101 3adant3 φ k x 1 k sum^ n 1 k O E n O n E n
103 56 64 65 71 102 xrletrd φ k x 1 k sum^ n x O E n O n E n
104 103 3exp φ k x 1 k sum^ n x O E n O n E n
105 104 adantr φ x 𝒫 Fin k x 1 k sum^ n x O E n O n E n
106 105 rexlimdv φ x 𝒫 Fin k x 1 k sum^ n x O E n O n E n
107 40 106 mpd φ x 𝒫 Fin sum^ n x O E n O n E n
108 35 107 eqbrtrd φ x 𝒫 Fin sum^ n O E n x O n E n
109 108 ralrimiva φ x 𝒫 Fin sum^ n O E n x O n E n
110 20 24 18 sge0lefi φ sum^ n O E n O n E n x 𝒫 Fin sum^ n O E n x O n E n
111 109 110 mpbird φ sum^ n O E n O n E n
112 18 25 31 111 xrletrid φ O n E n = sum^ n O E n