| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caragenunicl.o |  |-  ( ph -> O e. OutMeas ) | 
						
							| 2 |  | caragenunicl.s |  |-  S = ( CaraGen ` O ) | 
						
							| 3 |  | caragenunicl.y |  |-  ( ph -> X C_ S ) | 
						
							| 4 |  | caragenunicl.ctb |  |-  ( ph -> X ~<_ _om ) | 
						
							| 5 |  | unieq |  |-  ( X = (/) -> U. X = U. (/) ) | 
						
							| 6 |  | uni0 |  |-  U. (/) = (/) | 
						
							| 7 | 5 6 | eqtrdi |  |-  ( X = (/) -> U. X = (/) ) | 
						
							| 8 | 7 | adantl |  |-  ( ( ph /\ X = (/) ) -> U. X = (/) ) | 
						
							| 9 | 1 2 | caragen0 |  |-  ( ph -> (/) e. S ) | 
						
							| 10 | 9 | adantr |  |-  ( ( ph /\ X = (/) ) -> (/) e. S ) | 
						
							| 11 | 8 10 | eqeltrd |  |-  ( ( ph /\ X = (/) ) -> U. X e. S ) | 
						
							| 12 |  | simpl |  |-  ( ( ph /\ -. X = (/) ) -> ph ) | 
						
							| 13 |  | neqne |  |-  ( -. X = (/) -> X =/= (/) ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ph /\ -. X = (/) ) -> X =/= (/) ) | 
						
							| 15 |  | simpr |  |-  ( ( ph /\ X =/= (/) ) -> X =/= (/) ) | 
						
							| 16 |  | reldom |  |-  Rel ~<_ | 
						
							| 17 |  | brrelex1 |  |-  ( ( Rel ~<_ /\ X ~<_ _om ) -> X e. _V ) | 
						
							| 18 | 16 17 | mpan |  |-  ( X ~<_ _om -> X e. _V ) | 
						
							| 19 | 4 18 | syl |  |-  ( ph -> X e. _V ) | 
						
							| 20 | 19 | adantr |  |-  ( ( ph /\ X =/= (/) ) -> X e. _V ) | 
						
							| 21 |  | 0sdomg |  |-  ( X e. _V -> ( (/) ~< X <-> X =/= (/) ) ) | 
						
							| 22 | 20 21 | syl |  |-  ( ( ph /\ X =/= (/) ) -> ( (/) ~< X <-> X =/= (/) ) ) | 
						
							| 23 | 15 22 | mpbird |  |-  ( ( ph /\ X =/= (/) ) -> (/) ~< X ) | 
						
							| 24 |  | nnenom |  |-  NN ~~ _om | 
						
							| 25 | 24 | ensymi |  |-  _om ~~ NN | 
						
							| 26 | 25 | a1i |  |-  ( ph -> _om ~~ NN ) | 
						
							| 27 |  | domentr |  |-  ( ( X ~<_ _om /\ _om ~~ NN ) -> X ~<_ NN ) | 
						
							| 28 | 4 26 27 | syl2anc |  |-  ( ph -> X ~<_ NN ) | 
						
							| 29 | 28 | adantr |  |-  ( ( ph /\ X =/= (/) ) -> X ~<_ NN ) | 
						
							| 30 |  | fodomr |  |-  ( ( (/) ~< X /\ X ~<_ NN ) -> E. f f : NN -onto-> X ) | 
						
							| 31 | 23 29 30 | syl2anc |  |-  ( ( ph /\ X =/= (/) ) -> E. f f : NN -onto-> X ) | 
						
							| 32 |  | founiiun |  |-  ( f : NN -onto-> X -> U. X = U_ n e. NN ( f ` n ) ) | 
						
							| 33 | 32 | adantl |  |-  ( ( ph /\ f : NN -onto-> X ) -> U. X = U_ n e. NN ( f ` n ) ) | 
						
							| 34 | 1 | adantr |  |-  ( ( ph /\ f : NN -onto-> X ) -> O e. OutMeas ) | 
						
							| 35 |  | 1zzd |  |-  ( ( ph /\ f : NN -onto-> X ) -> 1 e. ZZ ) | 
						
							| 36 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 37 |  | fof |  |-  ( f : NN -onto-> X -> f : NN --> X ) | 
						
							| 38 | 37 | adantl |  |-  ( ( ph /\ f : NN -onto-> X ) -> f : NN --> X ) | 
						
							| 39 | 3 | adantr |  |-  ( ( ph /\ f : NN -onto-> X ) -> X C_ S ) | 
						
							| 40 | 38 39 | fssd |  |-  ( ( ph /\ f : NN -onto-> X ) -> f : NN --> S ) | 
						
							| 41 | 34 2 35 36 40 | carageniuncl |  |-  ( ( ph /\ f : NN -onto-> X ) -> U_ n e. NN ( f ` n ) e. S ) | 
						
							| 42 | 33 41 | eqeltrd |  |-  ( ( ph /\ f : NN -onto-> X ) -> U. X e. S ) | 
						
							| 43 | 42 | ex |  |-  ( ph -> ( f : NN -onto-> X -> U. X e. S ) ) | 
						
							| 44 | 43 | adantr |  |-  ( ( ph /\ X =/= (/) ) -> ( f : NN -onto-> X -> U. X e. S ) ) | 
						
							| 45 | 44 | exlimdv |  |-  ( ( ph /\ X =/= (/) ) -> ( E. f f : NN -onto-> X -> U. X e. S ) ) | 
						
							| 46 | 31 45 | mpd |  |-  ( ( ph /\ X =/= (/) ) -> U. X e. S ) | 
						
							| 47 | 12 14 46 | syl2anc |  |-  ( ( ph /\ -. X = (/) ) -> U. X e. S ) | 
						
							| 48 | 11 47 | pm2.61dan |  |-  ( ph -> U. X e. S ) |