Step |
Hyp |
Ref |
Expression |
1 |
|
caragenunicl.o |
|- ( ph -> O e. OutMeas ) |
2 |
|
caragenunicl.s |
|- S = ( CaraGen ` O ) |
3 |
|
caragenunicl.y |
|- ( ph -> X C_ S ) |
4 |
|
caragenunicl.ctb |
|- ( ph -> X ~<_ _om ) |
5 |
|
unieq |
|- ( X = (/) -> U. X = U. (/) ) |
6 |
|
uni0 |
|- U. (/) = (/) |
7 |
5 6
|
eqtrdi |
|- ( X = (/) -> U. X = (/) ) |
8 |
7
|
adantl |
|- ( ( ph /\ X = (/) ) -> U. X = (/) ) |
9 |
1 2
|
caragen0 |
|- ( ph -> (/) e. S ) |
10 |
9
|
adantr |
|- ( ( ph /\ X = (/) ) -> (/) e. S ) |
11 |
8 10
|
eqeltrd |
|- ( ( ph /\ X = (/) ) -> U. X e. S ) |
12 |
|
simpl |
|- ( ( ph /\ -. X = (/) ) -> ph ) |
13 |
|
neqne |
|- ( -. X = (/) -> X =/= (/) ) |
14 |
13
|
adantl |
|- ( ( ph /\ -. X = (/) ) -> X =/= (/) ) |
15 |
|
simpr |
|- ( ( ph /\ X =/= (/) ) -> X =/= (/) ) |
16 |
|
reldom |
|- Rel ~<_ |
17 |
|
brrelex1 |
|- ( ( Rel ~<_ /\ X ~<_ _om ) -> X e. _V ) |
18 |
16 17
|
mpan |
|- ( X ~<_ _om -> X e. _V ) |
19 |
4 18
|
syl |
|- ( ph -> X e. _V ) |
20 |
19
|
adantr |
|- ( ( ph /\ X =/= (/) ) -> X e. _V ) |
21 |
|
0sdomg |
|- ( X e. _V -> ( (/) ~< X <-> X =/= (/) ) ) |
22 |
20 21
|
syl |
|- ( ( ph /\ X =/= (/) ) -> ( (/) ~< X <-> X =/= (/) ) ) |
23 |
15 22
|
mpbird |
|- ( ( ph /\ X =/= (/) ) -> (/) ~< X ) |
24 |
|
nnenom |
|- NN ~~ _om |
25 |
24
|
ensymi |
|- _om ~~ NN |
26 |
25
|
a1i |
|- ( ph -> _om ~~ NN ) |
27 |
|
domentr |
|- ( ( X ~<_ _om /\ _om ~~ NN ) -> X ~<_ NN ) |
28 |
4 26 27
|
syl2anc |
|- ( ph -> X ~<_ NN ) |
29 |
28
|
adantr |
|- ( ( ph /\ X =/= (/) ) -> X ~<_ NN ) |
30 |
|
fodomr |
|- ( ( (/) ~< X /\ X ~<_ NN ) -> E. f f : NN -onto-> X ) |
31 |
23 29 30
|
syl2anc |
|- ( ( ph /\ X =/= (/) ) -> E. f f : NN -onto-> X ) |
32 |
|
founiiun |
|- ( f : NN -onto-> X -> U. X = U_ n e. NN ( f ` n ) ) |
33 |
32
|
adantl |
|- ( ( ph /\ f : NN -onto-> X ) -> U. X = U_ n e. NN ( f ` n ) ) |
34 |
1
|
adantr |
|- ( ( ph /\ f : NN -onto-> X ) -> O e. OutMeas ) |
35 |
|
1zzd |
|- ( ( ph /\ f : NN -onto-> X ) -> 1 e. ZZ ) |
36 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
37 |
|
fof |
|- ( f : NN -onto-> X -> f : NN --> X ) |
38 |
37
|
adantl |
|- ( ( ph /\ f : NN -onto-> X ) -> f : NN --> X ) |
39 |
3
|
adantr |
|- ( ( ph /\ f : NN -onto-> X ) -> X C_ S ) |
40 |
38 39
|
fssd |
|- ( ( ph /\ f : NN -onto-> X ) -> f : NN --> S ) |
41 |
34 2 35 36 40
|
carageniuncl |
|- ( ( ph /\ f : NN -onto-> X ) -> U_ n e. NN ( f ` n ) e. S ) |
42 |
33 41
|
eqeltrd |
|- ( ( ph /\ f : NN -onto-> X ) -> U. X e. S ) |
43 |
42
|
ex |
|- ( ph -> ( f : NN -onto-> X -> U. X e. S ) ) |
44 |
43
|
adantr |
|- ( ( ph /\ X =/= (/) ) -> ( f : NN -onto-> X -> U. X e. S ) ) |
45 |
44
|
exlimdv |
|- ( ( ph /\ X =/= (/) ) -> ( E. f f : NN -onto-> X -> U. X e. S ) ) |
46 |
31 45
|
mpd |
|- ( ( ph /\ X =/= (/) ) -> U. X e. S ) |
47 |
12 14 46
|
syl2anc |
|- ( ( ph /\ -. X = (/) ) -> U. X e. S ) |
48 |
11 47
|
pm2.61dan |
|- ( ph -> U. X e. S ) |