| Step |
Hyp |
Ref |
Expression |
| 1 |
|
carageniuncllem1.o |
|- ( ph -> O e. OutMeas ) |
| 2 |
|
carageniuncllem1.s |
|- S = ( CaraGen ` O ) |
| 3 |
|
carageniuncllem1.x |
|- X = U. dom O |
| 4 |
|
carageniuncllem1.a |
|- ( ph -> A C_ X ) |
| 5 |
|
carageniuncllem1.re |
|- ( ph -> ( O ` A ) e. RR ) |
| 6 |
|
carageniuncllem1.z |
|- Z = ( ZZ>= ` M ) |
| 7 |
|
carageniuncllem1.e |
|- ( ph -> E : Z --> S ) |
| 8 |
|
carageniuncllem1.g |
|- G = ( n e. Z |-> U_ i e. ( M ... n ) ( E ` i ) ) |
| 9 |
|
carageniuncllem1.f |
|- F = ( n e. Z |-> ( ( E ` n ) \ U_ i e. ( M ..^ n ) ( E ` i ) ) ) |
| 10 |
|
carageniuncllem1.k |
|- ( ph -> K e. Z ) |
| 11 |
10 6
|
eleqtrdi |
|- ( ph -> K e. ( ZZ>= ` M ) ) |
| 12 |
|
eluzfz2 |
|- ( K e. ( ZZ>= ` M ) -> K e. ( M ... K ) ) |
| 13 |
11 12
|
syl |
|- ( ph -> K e. ( M ... K ) ) |
| 14 |
|
id |
|- ( ph -> ph ) |
| 15 |
|
oveq2 |
|- ( k = M -> ( M ... k ) = ( M ... M ) ) |
| 16 |
15
|
sumeq1d |
|- ( k = M -> sum_ n e. ( M ... k ) ( O ` ( A i^i ( F ` n ) ) ) = sum_ n e. ( M ... M ) ( O ` ( A i^i ( F ` n ) ) ) ) |
| 17 |
|
fveq2 |
|- ( k = M -> ( G ` k ) = ( G ` M ) ) |
| 18 |
17
|
ineq2d |
|- ( k = M -> ( A i^i ( G ` k ) ) = ( A i^i ( G ` M ) ) ) |
| 19 |
18
|
fveq2d |
|- ( k = M -> ( O ` ( A i^i ( G ` k ) ) ) = ( O ` ( A i^i ( G ` M ) ) ) ) |
| 20 |
16 19
|
eqeq12d |
|- ( k = M -> ( sum_ n e. ( M ... k ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` k ) ) ) <-> sum_ n e. ( M ... M ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` M ) ) ) ) ) |
| 21 |
20
|
imbi2d |
|- ( k = M -> ( ( ph -> sum_ n e. ( M ... k ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` k ) ) ) ) <-> ( ph -> sum_ n e. ( M ... M ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` M ) ) ) ) ) ) |
| 22 |
|
oveq2 |
|- ( k = j -> ( M ... k ) = ( M ... j ) ) |
| 23 |
22
|
sumeq1d |
|- ( k = j -> sum_ n e. ( M ... k ) ( O ` ( A i^i ( F ` n ) ) ) = sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) ) |
| 24 |
|
fveq2 |
|- ( k = j -> ( G ` k ) = ( G ` j ) ) |
| 25 |
24
|
ineq2d |
|- ( k = j -> ( A i^i ( G ` k ) ) = ( A i^i ( G ` j ) ) ) |
| 26 |
25
|
fveq2d |
|- ( k = j -> ( O ` ( A i^i ( G ` k ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) |
| 27 |
23 26
|
eqeq12d |
|- ( k = j -> ( sum_ n e. ( M ... k ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` k ) ) ) <-> sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) ) |
| 28 |
27
|
imbi2d |
|- ( k = j -> ( ( ph -> sum_ n e. ( M ... k ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` k ) ) ) ) <-> ( ph -> sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) ) ) |
| 29 |
|
oveq2 |
|- ( k = ( j + 1 ) -> ( M ... k ) = ( M ... ( j + 1 ) ) ) |
| 30 |
29
|
sumeq1d |
|- ( k = ( j + 1 ) -> sum_ n e. ( M ... k ) ( O ` ( A i^i ( F ` n ) ) ) = sum_ n e. ( M ... ( j + 1 ) ) ( O ` ( A i^i ( F ` n ) ) ) ) |
| 31 |
|
fveq2 |
|- ( k = ( j + 1 ) -> ( G ` k ) = ( G ` ( j + 1 ) ) ) |
| 32 |
31
|
ineq2d |
|- ( k = ( j + 1 ) -> ( A i^i ( G ` k ) ) = ( A i^i ( G ` ( j + 1 ) ) ) ) |
| 33 |
32
|
fveq2d |
|- ( k = ( j + 1 ) -> ( O ` ( A i^i ( G ` k ) ) ) = ( O ` ( A i^i ( G ` ( j + 1 ) ) ) ) ) |
| 34 |
30 33
|
eqeq12d |
|- ( k = ( j + 1 ) -> ( sum_ n e. ( M ... k ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` k ) ) ) <-> sum_ n e. ( M ... ( j + 1 ) ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` ( j + 1 ) ) ) ) ) ) |
| 35 |
34
|
imbi2d |
|- ( k = ( j + 1 ) -> ( ( ph -> sum_ n e. ( M ... k ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` k ) ) ) ) <-> ( ph -> sum_ n e. ( M ... ( j + 1 ) ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` ( j + 1 ) ) ) ) ) ) ) |
| 36 |
|
oveq2 |
|- ( k = K -> ( M ... k ) = ( M ... K ) ) |
| 37 |
36
|
sumeq1d |
|- ( k = K -> sum_ n e. ( M ... k ) ( O ` ( A i^i ( F ` n ) ) ) = sum_ n e. ( M ... K ) ( O ` ( A i^i ( F ` n ) ) ) ) |
| 38 |
|
fveq2 |
|- ( k = K -> ( G ` k ) = ( G ` K ) ) |
| 39 |
38
|
ineq2d |
|- ( k = K -> ( A i^i ( G ` k ) ) = ( A i^i ( G ` K ) ) ) |
| 40 |
39
|
fveq2d |
|- ( k = K -> ( O ` ( A i^i ( G ` k ) ) ) = ( O ` ( A i^i ( G ` K ) ) ) ) |
| 41 |
37 40
|
eqeq12d |
|- ( k = K -> ( sum_ n e. ( M ... k ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` k ) ) ) <-> sum_ n e. ( M ... K ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` K ) ) ) ) ) |
| 42 |
41
|
imbi2d |
|- ( k = K -> ( ( ph -> sum_ n e. ( M ... k ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` k ) ) ) ) <-> ( ph -> sum_ n e. ( M ... K ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` K ) ) ) ) ) ) |
| 43 |
|
eluzel2 |
|- ( K e. ( ZZ>= ` M ) -> M e. ZZ ) |
| 44 |
11 43
|
syl |
|- ( ph -> M e. ZZ ) |
| 45 |
|
fzsn |
|- ( M e. ZZ -> ( M ... M ) = { M } ) |
| 46 |
44 45
|
syl |
|- ( ph -> ( M ... M ) = { M } ) |
| 47 |
46
|
sumeq1d |
|- ( ph -> sum_ n e. ( M ... M ) ( O ` ( A i^i ( F ` n ) ) ) = sum_ n e. { M } ( O ` ( A i^i ( F ` n ) ) ) ) |
| 48 |
|
inss1 |
|- ( A i^i ( F ` M ) ) C_ A |
| 49 |
48
|
a1i |
|- ( ph -> ( A i^i ( F ` M ) ) C_ A ) |
| 50 |
1 3 4 5 49
|
omessre |
|- ( ph -> ( O ` ( A i^i ( F ` M ) ) ) e. RR ) |
| 51 |
50
|
recnd |
|- ( ph -> ( O ` ( A i^i ( F ` M ) ) ) e. CC ) |
| 52 |
|
fveq2 |
|- ( n = M -> ( F ` n ) = ( F ` M ) ) |
| 53 |
52
|
ineq2d |
|- ( n = M -> ( A i^i ( F ` n ) ) = ( A i^i ( F ` M ) ) ) |
| 54 |
53
|
fveq2d |
|- ( n = M -> ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( F ` M ) ) ) ) |
| 55 |
54
|
sumsn |
|- ( ( M e. ZZ /\ ( O ` ( A i^i ( F ` M ) ) ) e. CC ) -> sum_ n e. { M } ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( F ` M ) ) ) ) |
| 56 |
44 51 55
|
syl2anc |
|- ( ph -> sum_ n e. { M } ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( F ` M ) ) ) ) |
| 57 |
|
eqidd |
|- ( ph -> ( O ` ( A i^i ( E ` M ) ) ) = ( O ` ( A i^i ( E ` M ) ) ) ) |
| 58 |
|
fveq2 |
|- ( n = M -> ( E ` n ) = ( E ` M ) ) |
| 59 |
|
oveq2 |
|- ( n = M -> ( M ..^ n ) = ( M ..^ M ) ) |
| 60 |
59
|
iuneq1d |
|- ( n = M -> U_ i e. ( M ..^ n ) ( E ` i ) = U_ i e. ( M ..^ M ) ( E ` i ) ) |
| 61 |
58 60
|
difeq12d |
|- ( n = M -> ( ( E ` n ) \ U_ i e. ( M ..^ n ) ( E ` i ) ) = ( ( E ` M ) \ U_ i e. ( M ..^ M ) ( E ` i ) ) ) |
| 62 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
| 63 |
44 62
|
syl |
|- ( ph -> M e. ( ZZ>= ` M ) ) |
| 64 |
6
|
a1i |
|- ( ph -> Z = ( ZZ>= ` M ) ) |
| 65 |
64
|
eqcomd |
|- ( ph -> ( ZZ>= ` M ) = Z ) |
| 66 |
63 65
|
eleqtrd |
|- ( ph -> M e. Z ) |
| 67 |
|
fvex |
|- ( E ` M ) e. _V |
| 68 |
|
difexg |
|- ( ( E ` M ) e. _V -> ( ( E ` M ) \ U_ i e. ( M ..^ M ) ( E ` i ) ) e. _V ) |
| 69 |
67 68
|
ax-mp |
|- ( ( E ` M ) \ U_ i e. ( M ..^ M ) ( E ` i ) ) e. _V |
| 70 |
69
|
a1i |
|- ( ph -> ( ( E ` M ) \ U_ i e. ( M ..^ M ) ( E ` i ) ) e. _V ) |
| 71 |
9 61 66 70
|
fvmptd3 |
|- ( ph -> ( F ` M ) = ( ( E ` M ) \ U_ i e. ( M ..^ M ) ( E ` i ) ) ) |
| 72 |
|
fzo0 |
|- ( M ..^ M ) = (/) |
| 73 |
|
iuneq1 |
|- ( ( M ..^ M ) = (/) -> U_ i e. ( M ..^ M ) ( E ` i ) = U_ i e. (/) ( E ` i ) ) |
| 74 |
72 73
|
ax-mp |
|- U_ i e. ( M ..^ M ) ( E ` i ) = U_ i e. (/) ( E ` i ) |
| 75 |
|
0iun |
|- U_ i e. (/) ( E ` i ) = (/) |
| 76 |
74 75
|
eqtri |
|- U_ i e. ( M ..^ M ) ( E ` i ) = (/) |
| 77 |
76
|
difeq2i |
|- ( ( E ` M ) \ U_ i e. ( M ..^ M ) ( E ` i ) ) = ( ( E ` M ) \ (/) ) |
| 78 |
77
|
a1i |
|- ( ph -> ( ( E ` M ) \ U_ i e. ( M ..^ M ) ( E ` i ) ) = ( ( E ` M ) \ (/) ) ) |
| 79 |
|
dif0 |
|- ( ( E ` M ) \ (/) ) = ( E ` M ) |
| 80 |
79
|
a1i |
|- ( ph -> ( ( E ` M ) \ (/) ) = ( E ` M ) ) |
| 81 |
71 78 80
|
3eqtrd |
|- ( ph -> ( F ` M ) = ( E ` M ) ) |
| 82 |
81
|
ineq2d |
|- ( ph -> ( A i^i ( F ` M ) ) = ( A i^i ( E ` M ) ) ) |
| 83 |
82
|
fveq2d |
|- ( ph -> ( O ` ( A i^i ( F ` M ) ) ) = ( O ` ( A i^i ( E ` M ) ) ) ) |
| 84 |
|
oveq2 |
|- ( n = M -> ( M ... n ) = ( M ... M ) ) |
| 85 |
84
|
iuneq1d |
|- ( n = M -> U_ i e. ( M ... n ) ( E ` i ) = U_ i e. ( M ... M ) ( E ` i ) ) |
| 86 |
|
ovex |
|- ( M ... M ) e. _V |
| 87 |
|
fvex |
|- ( E ` i ) e. _V |
| 88 |
86 87
|
iunex |
|- U_ i e. ( M ... M ) ( E ` i ) e. _V |
| 89 |
88
|
a1i |
|- ( ph -> U_ i e. ( M ... M ) ( E ` i ) e. _V ) |
| 90 |
8 85 66 89
|
fvmptd3 |
|- ( ph -> ( G ` M ) = U_ i e. ( M ... M ) ( E ` i ) ) |
| 91 |
46
|
iuneq1d |
|- ( ph -> U_ i e. ( M ... M ) ( E ` i ) = U_ i e. { M } ( E ` i ) ) |
| 92 |
|
fveq2 |
|- ( i = M -> ( E ` i ) = ( E ` M ) ) |
| 93 |
92
|
iunxsng |
|- ( M e. ZZ -> U_ i e. { M } ( E ` i ) = ( E ` M ) ) |
| 94 |
44 93
|
syl |
|- ( ph -> U_ i e. { M } ( E ` i ) = ( E ` M ) ) |
| 95 |
90 91 94
|
3eqtrd |
|- ( ph -> ( G ` M ) = ( E ` M ) ) |
| 96 |
95
|
ineq2d |
|- ( ph -> ( A i^i ( G ` M ) ) = ( A i^i ( E ` M ) ) ) |
| 97 |
96
|
fveq2d |
|- ( ph -> ( O ` ( A i^i ( G ` M ) ) ) = ( O ` ( A i^i ( E ` M ) ) ) ) |
| 98 |
57 83 97
|
3eqtr4d |
|- ( ph -> ( O ` ( A i^i ( F ` M ) ) ) = ( O ` ( A i^i ( G ` M ) ) ) ) |
| 99 |
47 56 98
|
3eqtrd |
|- ( ph -> sum_ n e. ( M ... M ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` M ) ) ) ) |
| 100 |
99
|
a1i |
|- ( K e. ( ZZ>= ` M ) -> ( ph -> sum_ n e. ( M ... M ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` M ) ) ) ) ) |
| 101 |
|
simp3 |
|- ( ( j e. ( M ..^ K ) /\ ( ph -> sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) /\ ph ) -> ph ) |
| 102 |
|
simp1 |
|- ( ( j e. ( M ..^ K ) /\ ( ph -> sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) /\ ph ) -> j e. ( M ..^ K ) ) |
| 103 |
|
id |
|- ( ( ph -> sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) -> ( ph -> sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) ) |
| 104 |
103
|
imp |
|- ( ( ( ph -> sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) /\ ph ) -> sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) |
| 105 |
104
|
3adant1 |
|- ( ( j e. ( M ..^ K ) /\ ( ph -> sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) /\ ph ) -> sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) |
| 106 |
|
elfzouz |
|- ( j e. ( M ..^ K ) -> j e. ( ZZ>= ` M ) ) |
| 107 |
106
|
adantl |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> j e. ( ZZ>= ` M ) ) |
| 108 |
1
|
adantr |
|- ( ( ph /\ n e. ( M ... ( j + 1 ) ) ) -> O e. OutMeas ) |
| 109 |
4
|
adantr |
|- ( ( ph /\ n e. ( M ... ( j + 1 ) ) ) -> A C_ X ) |
| 110 |
5
|
adantr |
|- ( ( ph /\ n e. ( M ... ( j + 1 ) ) ) -> ( O ` A ) e. RR ) |
| 111 |
|
inss1 |
|- ( A i^i ( F ` n ) ) C_ A |
| 112 |
111
|
a1i |
|- ( ( ph /\ n e. ( M ... ( j + 1 ) ) ) -> ( A i^i ( F ` n ) ) C_ A ) |
| 113 |
108 3 109 110 112
|
omessre |
|- ( ( ph /\ n e. ( M ... ( j + 1 ) ) ) -> ( O ` ( A i^i ( F ` n ) ) ) e. RR ) |
| 114 |
113
|
recnd |
|- ( ( ph /\ n e. ( M ... ( j + 1 ) ) ) -> ( O ` ( A i^i ( F ` n ) ) ) e. CC ) |
| 115 |
114
|
adantlr |
|- ( ( ( ph /\ j e. ( M ..^ K ) ) /\ n e. ( M ... ( j + 1 ) ) ) -> ( O ` ( A i^i ( F ` n ) ) ) e. CC ) |
| 116 |
|
fveq2 |
|- ( n = ( j + 1 ) -> ( F ` n ) = ( F ` ( j + 1 ) ) ) |
| 117 |
116
|
ineq2d |
|- ( n = ( j + 1 ) -> ( A i^i ( F ` n ) ) = ( A i^i ( F ` ( j + 1 ) ) ) ) |
| 118 |
117
|
fveq2d |
|- ( n = ( j + 1 ) -> ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( F ` ( j + 1 ) ) ) ) ) |
| 119 |
107 115 118
|
fsump1 |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> sum_ n e. ( M ... ( j + 1 ) ) ( O ` ( A i^i ( F ` n ) ) ) = ( sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) + ( O ` ( A i^i ( F ` ( j + 1 ) ) ) ) ) ) |
| 120 |
119
|
3adant3 |
|- ( ( ph /\ j e. ( M ..^ K ) /\ sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) -> sum_ n e. ( M ... ( j + 1 ) ) ( O ` ( A i^i ( F ` n ) ) ) = ( sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) + ( O ` ( A i^i ( F ` ( j + 1 ) ) ) ) ) ) |
| 121 |
|
oveq1 |
|- ( sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) -> ( sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) + ( O ` ( A i^i ( F ` ( j + 1 ) ) ) ) ) = ( ( O ` ( A i^i ( G ` j ) ) ) + ( O ` ( A i^i ( F ` ( j + 1 ) ) ) ) ) ) |
| 122 |
121
|
3ad2ant3 |
|- ( ( ph /\ j e. ( M ..^ K ) /\ sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) -> ( sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) + ( O ` ( A i^i ( F ` ( j + 1 ) ) ) ) ) = ( ( O ` ( A i^i ( G ` j ) ) ) + ( O ` ( A i^i ( F ` ( j + 1 ) ) ) ) ) ) |
| 123 |
|
fzssp1 |
|- ( M ... j ) C_ ( M ... ( j + 1 ) ) |
| 124 |
|
iunss1 |
|- ( ( M ... j ) C_ ( M ... ( j + 1 ) ) -> U_ i e. ( M ... j ) ( E ` i ) C_ U_ i e. ( M ... ( j + 1 ) ) ( E ` i ) ) |
| 125 |
123 124
|
ax-mp |
|- U_ i e. ( M ... j ) ( E ` i ) C_ U_ i e. ( M ... ( j + 1 ) ) ( E ` i ) |
| 126 |
125
|
a1i |
|- ( j e. ( M ..^ K ) -> U_ i e. ( M ... j ) ( E ` i ) C_ U_ i e. ( M ... ( j + 1 ) ) ( E ` i ) ) |
| 127 |
|
oveq2 |
|- ( n = j -> ( M ... n ) = ( M ... j ) ) |
| 128 |
127
|
iuneq1d |
|- ( n = j -> U_ i e. ( M ... n ) ( E ` i ) = U_ i e. ( M ... j ) ( E ` i ) ) |
| 129 |
106 6
|
eleqtrrdi |
|- ( j e. ( M ..^ K ) -> j e. Z ) |
| 130 |
|
ovex |
|- ( M ... j ) e. _V |
| 131 |
130 87
|
iunex |
|- U_ i e. ( M ... j ) ( E ` i ) e. _V |
| 132 |
131
|
a1i |
|- ( j e. ( M ..^ K ) -> U_ i e. ( M ... j ) ( E ` i ) e. _V ) |
| 133 |
8 128 129 132
|
fvmptd3 |
|- ( j e. ( M ..^ K ) -> ( G ` j ) = U_ i e. ( M ... j ) ( E ` i ) ) |
| 134 |
|
oveq2 |
|- ( n = ( j + 1 ) -> ( M ... n ) = ( M ... ( j + 1 ) ) ) |
| 135 |
134
|
iuneq1d |
|- ( n = ( j + 1 ) -> U_ i e. ( M ... n ) ( E ` i ) = U_ i e. ( M ... ( j + 1 ) ) ( E ` i ) ) |
| 136 |
|
peano2uz |
|- ( j e. ( ZZ>= ` M ) -> ( j + 1 ) e. ( ZZ>= ` M ) ) |
| 137 |
106 136
|
syl |
|- ( j e. ( M ..^ K ) -> ( j + 1 ) e. ( ZZ>= ` M ) ) |
| 138 |
6
|
eqcomi |
|- ( ZZ>= ` M ) = Z |
| 139 |
137 138
|
eleqtrdi |
|- ( j e. ( M ..^ K ) -> ( j + 1 ) e. Z ) |
| 140 |
|
ovex |
|- ( M ... ( j + 1 ) ) e. _V |
| 141 |
140 87
|
iunex |
|- U_ i e. ( M ... ( j + 1 ) ) ( E ` i ) e. _V |
| 142 |
141
|
a1i |
|- ( j e. ( M ..^ K ) -> U_ i e. ( M ... ( j + 1 ) ) ( E ` i ) e. _V ) |
| 143 |
8 135 139 142
|
fvmptd3 |
|- ( j e. ( M ..^ K ) -> ( G ` ( j + 1 ) ) = U_ i e. ( M ... ( j + 1 ) ) ( E ` i ) ) |
| 144 |
133 143
|
sseq12d |
|- ( j e. ( M ..^ K ) -> ( ( G ` j ) C_ ( G ` ( j + 1 ) ) <-> U_ i e. ( M ... j ) ( E ` i ) C_ U_ i e. ( M ... ( j + 1 ) ) ( E ` i ) ) ) |
| 145 |
126 144
|
mpbird |
|- ( j e. ( M ..^ K ) -> ( G ` j ) C_ ( G ` ( j + 1 ) ) ) |
| 146 |
|
inabs3 |
|- ( ( G ` j ) C_ ( G ` ( j + 1 ) ) -> ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) = ( A i^i ( G ` j ) ) ) |
| 147 |
145 146
|
syl |
|- ( j e. ( M ..^ K ) -> ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) = ( A i^i ( G ` j ) ) ) |
| 148 |
147
|
fveq2d |
|- ( j e. ( M ..^ K ) -> ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) |
| 149 |
148
|
eqcomd |
|- ( j e. ( M ..^ K ) -> ( O ` ( A i^i ( G ` j ) ) ) = ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) ) ) |
| 150 |
149
|
adantl |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( O ` ( A i^i ( G ` j ) ) ) = ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) ) ) |
| 151 |
|
elfzoelz |
|- ( j e. ( M ..^ K ) -> j e. ZZ ) |
| 152 |
|
fzval3 |
|- ( j e. ZZ -> ( M ... j ) = ( M ..^ ( j + 1 ) ) ) |
| 153 |
151 152
|
syl |
|- ( j e. ( M ..^ K ) -> ( M ... j ) = ( M ..^ ( j + 1 ) ) ) |
| 154 |
153
|
eqcomd |
|- ( j e. ( M ..^ K ) -> ( M ..^ ( j + 1 ) ) = ( M ... j ) ) |
| 155 |
154
|
iuneq1d |
|- ( j e. ( M ..^ K ) -> U_ i e. ( M ..^ ( j + 1 ) ) ( E ` i ) = U_ i e. ( M ... j ) ( E ` i ) ) |
| 156 |
155
|
difeq2d |
|- ( j e. ( M ..^ K ) -> ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ..^ ( j + 1 ) ) ( E ` i ) ) = ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ... j ) ( E ` i ) ) ) |
| 157 |
156
|
adantl |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ..^ ( j + 1 ) ) ( E ` i ) ) = ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ... j ) ( E ` i ) ) ) |
| 158 |
|
fveq2 |
|- ( n = ( j + 1 ) -> ( E ` n ) = ( E ` ( j + 1 ) ) ) |
| 159 |
|
oveq2 |
|- ( n = ( j + 1 ) -> ( M ..^ n ) = ( M ..^ ( j + 1 ) ) ) |
| 160 |
159
|
iuneq1d |
|- ( n = ( j + 1 ) -> U_ i e. ( M ..^ n ) ( E ` i ) = U_ i e. ( M ..^ ( j + 1 ) ) ( E ` i ) ) |
| 161 |
158 160
|
difeq12d |
|- ( n = ( j + 1 ) -> ( ( E ` n ) \ U_ i e. ( M ..^ n ) ( E ` i ) ) = ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ..^ ( j + 1 ) ) ( E ` i ) ) ) |
| 162 |
|
fvex |
|- ( E ` ( j + 1 ) ) e. _V |
| 163 |
|
difexg |
|- ( ( E ` ( j + 1 ) ) e. _V -> ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ..^ ( j + 1 ) ) ( E ` i ) ) e. _V ) |
| 164 |
162 163
|
ax-mp |
|- ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ..^ ( j + 1 ) ) ( E ` i ) ) e. _V |
| 165 |
164
|
a1i |
|- ( j e. ( M ..^ K ) -> ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ..^ ( j + 1 ) ) ( E ` i ) ) e. _V ) |
| 166 |
9 161 139 165
|
fvmptd3 |
|- ( j e. ( M ..^ K ) -> ( F ` ( j + 1 ) ) = ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ..^ ( j + 1 ) ) ( E ` i ) ) ) |
| 167 |
166
|
adantl |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( F ` ( j + 1 ) ) = ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ..^ ( j + 1 ) ) ( E ` i ) ) ) |
| 168 |
|
nfcv |
|- F/_ i ( E ` ( j + 1 ) ) |
| 169 |
|
fveq2 |
|- ( i = ( j + 1 ) -> ( E ` i ) = ( E ` ( j + 1 ) ) ) |
| 170 |
168 106 169
|
iunp1 |
|- ( j e. ( M ..^ K ) -> U_ i e. ( M ... ( j + 1 ) ) ( E ` i ) = ( U_ i e. ( M ... j ) ( E ` i ) u. ( E ` ( j + 1 ) ) ) ) |
| 171 |
143 170
|
eqtrd |
|- ( j e. ( M ..^ K ) -> ( G ` ( j + 1 ) ) = ( U_ i e. ( M ... j ) ( E ` i ) u. ( E ` ( j + 1 ) ) ) ) |
| 172 |
171 133
|
difeq12d |
|- ( j e. ( M ..^ K ) -> ( ( G ` ( j + 1 ) ) \ ( G ` j ) ) = ( ( U_ i e. ( M ... j ) ( E ` i ) u. ( E ` ( j + 1 ) ) ) \ U_ i e. ( M ... j ) ( E ` i ) ) ) |
| 173 |
|
difundir |
|- ( ( U_ i e. ( M ... j ) ( E ` i ) u. ( E ` ( j + 1 ) ) ) \ U_ i e. ( M ... j ) ( E ` i ) ) = ( ( U_ i e. ( M ... j ) ( E ` i ) \ U_ i e. ( M ... j ) ( E ` i ) ) u. ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ... j ) ( E ` i ) ) ) |
| 174 |
|
difid |
|- ( U_ i e. ( M ... j ) ( E ` i ) \ U_ i e. ( M ... j ) ( E ` i ) ) = (/) |
| 175 |
174
|
uneq1i |
|- ( ( U_ i e. ( M ... j ) ( E ` i ) \ U_ i e. ( M ... j ) ( E ` i ) ) u. ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ... j ) ( E ` i ) ) ) = ( (/) u. ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ... j ) ( E ` i ) ) ) |
| 176 |
|
0un |
|- ( (/) u. ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ... j ) ( E ` i ) ) ) = ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ... j ) ( E ` i ) ) |
| 177 |
173 175 176
|
3eqtri |
|- ( ( U_ i e. ( M ... j ) ( E ` i ) u. ( E ` ( j + 1 ) ) ) \ U_ i e. ( M ... j ) ( E ` i ) ) = ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ... j ) ( E ` i ) ) |
| 178 |
177
|
a1i |
|- ( j e. ( M ..^ K ) -> ( ( U_ i e. ( M ... j ) ( E ` i ) u. ( E ` ( j + 1 ) ) ) \ U_ i e. ( M ... j ) ( E ` i ) ) = ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ... j ) ( E ` i ) ) ) |
| 179 |
172 178
|
eqtrd |
|- ( j e. ( M ..^ K ) -> ( ( G ` ( j + 1 ) ) \ ( G ` j ) ) = ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ... j ) ( E ` i ) ) ) |
| 180 |
179
|
adantl |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( ( G ` ( j + 1 ) ) \ ( G ` j ) ) = ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ... j ) ( E ` i ) ) ) |
| 181 |
157 167 180
|
3eqtr4d |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( F ` ( j + 1 ) ) = ( ( G ` ( j + 1 ) ) \ ( G ` j ) ) ) |
| 182 |
181
|
ineq2d |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( A i^i ( F ` ( j + 1 ) ) ) = ( A i^i ( ( G ` ( j + 1 ) ) \ ( G ` j ) ) ) ) |
| 183 |
|
indif2 |
|- ( A i^i ( ( G ` ( j + 1 ) ) \ ( G ` j ) ) ) = ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) |
| 184 |
183
|
eqcomi |
|- ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) = ( A i^i ( ( G ` ( j + 1 ) ) \ ( G ` j ) ) ) |
| 185 |
184
|
a1i |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) = ( A i^i ( ( G ` ( j + 1 ) ) \ ( G ` j ) ) ) ) |
| 186 |
182 185
|
eqtr4d |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( A i^i ( F ` ( j + 1 ) ) ) = ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) ) |
| 187 |
186
|
fveq2d |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( O ` ( A i^i ( F ` ( j + 1 ) ) ) ) = ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) ) ) |
| 188 |
150 187
|
oveq12d |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( ( O ` ( A i^i ( G ` j ) ) ) + ( O ` ( A i^i ( F ` ( j + 1 ) ) ) ) ) = ( ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) ) + ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) ) ) ) |
| 189 |
|
inss1 |
|- ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) C_ ( A i^i ( G ` ( j + 1 ) ) ) |
| 190 |
|
inss1 |
|- ( A i^i ( G ` ( j + 1 ) ) ) C_ A |
| 191 |
189 190
|
sstri |
|- ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) C_ A |
| 192 |
191
|
a1i |
|- ( ph -> ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) C_ A ) |
| 193 |
1 3 4 5 192
|
omessre |
|- ( ph -> ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) ) e. RR ) |
| 194 |
193
|
adantr |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) ) e. RR ) |
| 195 |
1
|
adantr |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> O e. OutMeas ) |
| 196 |
4
|
adantr |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> A C_ X ) |
| 197 |
5
|
adantr |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( O ` A ) e. RR ) |
| 198 |
|
difss |
|- ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) C_ ( A i^i ( G ` ( j + 1 ) ) ) |
| 199 |
198 190
|
sstri |
|- ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) C_ A |
| 200 |
199
|
a1i |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) C_ A ) |
| 201 |
195 3 196 197 200
|
omessre |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) ) e. RR ) |
| 202 |
|
rexadd |
|- ( ( ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) ) e. RR /\ ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) ) e. RR ) -> ( ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) ) +e ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) ) ) = ( ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) ) + ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) ) ) ) |
| 203 |
194 201 202
|
syl2anc |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) ) +e ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) ) ) = ( ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) ) + ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) ) ) ) |
| 204 |
203
|
eqcomd |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) ) + ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) ) ) = ( ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) ) +e ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) ) ) ) |
| 205 |
133
|
adantl |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( G ` j ) = U_ i e. ( M ... j ) ( E ` i ) ) |
| 206 |
|
nfv |
|- F/ i ph |
| 207 |
|
fzfid |
|- ( ph -> ( M ... j ) e. Fin ) |
| 208 |
7
|
adantr |
|- ( ( ph /\ i e. ( M ... j ) ) -> E : Z --> S ) |
| 209 |
|
elfzuz |
|- ( i e. ( M ... j ) -> i e. ( ZZ>= ` M ) ) |
| 210 |
138
|
a1i |
|- ( i e. ( M ... j ) -> ( ZZ>= ` M ) = Z ) |
| 211 |
209 210
|
eleqtrd |
|- ( i e. ( M ... j ) -> i e. Z ) |
| 212 |
211
|
adantl |
|- ( ( ph /\ i e. ( M ... j ) ) -> i e. Z ) |
| 213 |
208 212
|
ffvelcdmd |
|- ( ( ph /\ i e. ( M ... j ) ) -> ( E ` i ) e. S ) |
| 214 |
206 1 2 207 213
|
caragenfiiuncl |
|- ( ph -> U_ i e. ( M ... j ) ( E ` i ) e. S ) |
| 215 |
214
|
adantr |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> U_ i e. ( M ... j ) ( E ` i ) e. S ) |
| 216 |
205 215
|
eqeltrd |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( G ` j ) e. S ) |
| 217 |
4
|
ssinss1d |
|- ( ph -> ( A i^i ( G ` ( j + 1 ) ) ) C_ X ) |
| 218 |
217
|
adantr |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( A i^i ( G ` ( j + 1 ) ) ) C_ X ) |
| 219 |
195 2 3 216 218
|
caragensplit |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) ) +e ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) ) ) = ( O ` ( A i^i ( G ` ( j + 1 ) ) ) ) ) |
| 220 |
188 204 219
|
3eqtrd |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( ( O ` ( A i^i ( G ` j ) ) ) + ( O ` ( A i^i ( F ` ( j + 1 ) ) ) ) ) = ( O ` ( A i^i ( G ` ( j + 1 ) ) ) ) ) |
| 221 |
220
|
3adant3 |
|- ( ( ph /\ j e. ( M ..^ K ) /\ sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) -> ( ( O ` ( A i^i ( G ` j ) ) ) + ( O ` ( A i^i ( F ` ( j + 1 ) ) ) ) ) = ( O ` ( A i^i ( G ` ( j + 1 ) ) ) ) ) |
| 222 |
120 122 221
|
3eqtrd |
|- ( ( ph /\ j e. ( M ..^ K ) /\ sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) -> sum_ n e. ( M ... ( j + 1 ) ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` ( j + 1 ) ) ) ) ) |
| 223 |
101 102 105 222
|
syl3anc |
|- ( ( j e. ( M ..^ K ) /\ ( ph -> sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) /\ ph ) -> sum_ n e. ( M ... ( j + 1 ) ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` ( j + 1 ) ) ) ) ) |
| 224 |
223
|
3exp |
|- ( j e. ( M ..^ K ) -> ( ( ph -> sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) -> ( ph -> sum_ n e. ( M ... ( j + 1 ) ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` ( j + 1 ) ) ) ) ) ) ) |
| 225 |
21 28 35 42 100 224
|
fzind2 |
|- ( K e. ( M ... K ) -> ( ph -> sum_ n e. ( M ... K ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` K ) ) ) ) ) |
| 226 |
13 14 225
|
sylc |
|- ( ph -> sum_ n e. ( M ... K ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` K ) ) ) ) |