Step |
Hyp |
Ref |
Expression |
1 |
|
carageniuncllem1.o |
|- ( ph -> O e. OutMeas ) |
2 |
|
carageniuncllem1.s |
|- S = ( CaraGen ` O ) |
3 |
|
carageniuncllem1.x |
|- X = U. dom O |
4 |
|
carageniuncllem1.a |
|- ( ph -> A C_ X ) |
5 |
|
carageniuncllem1.re |
|- ( ph -> ( O ` A ) e. RR ) |
6 |
|
carageniuncllem1.z |
|- Z = ( ZZ>= ` M ) |
7 |
|
carageniuncllem1.e |
|- ( ph -> E : Z --> S ) |
8 |
|
carageniuncllem1.g |
|- G = ( n e. Z |-> U_ i e. ( M ... n ) ( E ` i ) ) |
9 |
|
carageniuncllem1.f |
|- F = ( n e. Z |-> ( ( E ` n ) \ U_ i e. ( M ..^ n ) ( E ` i ) ) ) |
10 |
|
carageniuncllem1.k |
|- ( ph -> K e. Z ) |
11 |
10 6
|
eleqtrdi |
|- ( ph -> K e. ( ZZ>= ` M ) ) |
12 |
|
eluzfz2 |
|- ( K e. ( ZZ>= ` M ) -> K e. ( M ... K ) ) |
13 |
11 12
|
syl |
|- ( ph -> K e. ( M ... K ) ) |
14 |
|
id |
|- ( ph -> ph ) |
15 |
|
oveq2 |
|- ( k = M -> ( M ... k ) = ( M ... M ) ) |
16 |
15
|
sumeq1d |
|- ( k = M -> sum_ n e. ( M ... k ) ( O ` ( A i^i ( F ` n ) ) ) = sum_ n e. ( M ... M ) ( O ` ( A i^i ( F ` n ) ) ) ) |
17 |
|
fveq2 |
|- ( k = M -> ( G ` k ) = ( G ` M ) ) |
18 |
17
|
ineq2d |
|- ( k = M -> ( A i^i ( G ` k ) ) = ( A i^i ( G ` M ) ) ) |
19 |
18
|
fveq2d |
|- ( k = M -> ( O ` ( A i^i ( G ` k ) ) ) = ( O ` ( A i^i ( G ` M ) ) ) ) |
20 |
16 19
|
eqeq12d |
|- ( k = M -> ( sum_ n e. ( M ... k ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` k ) ) ) <-> sum_ n e. ( M ... M ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` M ) ) ) ) ) |
21 |
20
|
imbi2d |
|- ( k = M -> ( ( ph -> sum_ n e. ( M ... k ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` k ) ) ) ) <-> ( ph -> sum_ n e. ( M ... M ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` M ) ) ) ) ) ) |
22 |
|
oveq2 |
|- ( k = j -> ( M ... k ) = ( M ... j ) ) |
23 |
22
|
sumeq1d |
|- ( k = j -> sum_ n e. ( M ... k ) ( O ` ( A i^i ( F ` n ) ) ) = sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) ) |
24 |
|
fveq2 |
|- ( k = j -> ( G ` k ) = ( G ` j ) ) |
25 |
24
|
ineq2d |
|- ( k = j -> ( A i^i ( G ` k ) ) = ( A i^i ( G ` j ) ) ) |
26 |
25
|
fveq2d |
|- ( k = j -> ( O ` ( A i^i ( G ` k ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) |
27 |
23 26
|
eqeq12d |
|- ( k = j -> ( sum_ n e. ( M ... k ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` k ) ) ) <-> sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) ) |
28 |
27
|
imbi2d |
|- ( k = j -> ( ( ph -> sum_ n e. ( M ... k ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` k ) ) ) ) <-> ( ph -> sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) ) ) |
29 |
|
oveq2 |
|- ( k = ( j + 1 ) -> ( M ... k ) = ( M ... ( j + 1 ) ) ) |
30 |
29
|
sumeq1d |
|- ( k = ( j + 1 ) -> sum_ n e. ( M ... k ) ( O ` ( A i^i ( F ` n ) ) ) = sum_ n e. ( M ... ( j + 1 ) ) ( O ` ( A i^i ( F ` n ) ) ) ) |
31 |
|
fveq2 |
|- ( k = ( j + 1 ) -> ( G ` k ) = ( G ` ( j + 1 ) ) ) |
32 |
31
|
ineq2d |
|- ( k = ( j + 1 ) -> ( A i^i ( G ` k ) ) = ( A i^i ( G ` ( j + 1 ) ) ) ) |
33 |
32
|
fveq2d |
|- ( k = ( j + 1 ) -> ( O ` ( A i^i ( G ` k ) ) ) = ( O ` ( A i^i ( G ` ( j + 1 ) ) ) ) ) |
34 |
30 33
|
eqeq12d |
|- ( k = ( j + 1 ) -> ( sum_ n e. ( M ... k ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` k ) ) ) <-> sum_ n e. ( M ... ( j + 1 ) ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` ( j + 1 ) ) ) ) ) ) |
35 |
34
|
imbi2d |
|- ( k = ( j + 1 ) -> ( ( ph -> sum_ n e. ( M ... k ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` k ) ) ) ) <-> ( ph -> sum_ n e. ( M ... ( j + 1 ) ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` ( j + 1 ) ) ) ) ) ) ) |
36 |
|
oveq2 |
|- ( k = K -> ( M ... k ) = ( M ... K ) ) |
37 |
36
|
sumeq1d |
|- ( k = K -> sum_ n e. ( M ... k ) ( O ` ( A i^i ( F ` n ) ) ) = sum_ n e. ( M ... K ) ( O ` ( A i^i ( F ` n ) ) ) ) |
38 |
|
fveq2 |
|- ( k = K -> ( G ` k ) = ( G ` K ) ) |
39 |
38
|
ineq2d |
|- ( k = K -> ( A i^i ( G ` k ) ) = ( A i^i ( G ` K ) ) ) |
40 |
39
|
fveq2d |
|- ( k = K -> ( O ` ( A i^i ( G ` k ) ) ) = ( O ` ( A i^i ( G ` K ) ) ) ) |
41 |
37 40
|
eqeq12d |
|- ( k = K -> ( sum_ n e. ( M ... k ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` k ) ) ) <-> sum_ n e. ( M ... K ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` K ) ) ) ) ) |
42 |
41
|
imbi2d |
|- ( k = K -> ( ( ph -> sum_ n e. ( M ... k ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` k ) ) ) ) <-> ( ph -> sum_ n e. ( M ... K ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` K ) ) ) ) ) ) |
43 |
|
eluzel2 |
|- ( K e. ( ZZ>= ` M ) -> M e. ZZ ) |
44 |
11 43
|
syl |
|- ( ph -> M e. ZZ ) |
45 |
|
fzsn |
|- ( M e. ZZ -> ( M ... M ) = { M } ) |
46 |
44 45
|
syl |
|- ( ph -> ( M ... M ) = { M } ) |
47 |
46
|
sumeq1d |
|- ( ph -> sum_ n e. ( M ... M ) ( O ` ( A i^i ( F ` n ) ) ) = sum_ n e. { M } ( O ` ( A i^i ( F ` n ) ) ) ) |
48 |
|
inss1 |
|- ( A i^i ( F ` M ) ) C_ A |
49 |
48
|
a1i |
|- ( ph -> ( A i^i ( F ` M ) ) C_ A ) |
50 |
1 3 4 5 49
|
omessre |
|- ( ph -> ( O ` ( A i^i ( F ` M ) ) ) e. RR ) |
51 |
50
|
recnd |
|- ( ph -> ( O ` ( A i^i ( F ` M ) ) ) e. CC ) |
52 |
|
fveq2 |
|- ( n = M -> ( F ` n ) = ( F ` M ) ) |
53 |
52
|
ineq2d |
|- ( n = M -> ( A i^i ( F ` n ) ) = ( A i^i ( F ` M ) ) ) |
54 |
53
|
fveq2d |
|- ( n = M -> ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( F ` M ) ) ) ) |
55 |
54
|
sumsn |
|- ( ( M e. ZZ /\ ( O ` ( A i^i ( F ` M ) ) ) e. CC ) -> sum_ n e. { M } ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( F ` M ) ) ) ) |
56 |
44 51 55
|
syl2anc |
|- ( ph -> sum_ n e. { M } ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( F ` M ) ) ) ) |
57 |
|
eqidd |
|- ( ph -> ( O ` ( A i^i ( E ` M ) ) ) = ( O ` ( A i^i ( E ` M ) ) ) ) |
58 |
|
fveq2 |
|- ( n = M -> ( E ` n ) = ( E ` M ) ) |
59 |
|
oveq2 |
|- ( n = M -> ( M ..^ n ) = ( M ..^ M ) ) |
60 |
59
|
iuneq1d |
|- ( n = M -> U_ i e. ( M ..^ n ) ( E ` i ) = U_ i e. ( M ..^ M ) ( E ` i ) ) |
61 |
58 60
|
difeq12d |
|- ( n = M -> ( ( E ` n ) \ U_ i e. ( M ..^ n ) ( E ` i ) ) = ( ( E ` M ) \ U_ i e. ( M ..^ M ) ( E ` i ) ) ) |
62 |
|
uzid |
|- ( M e. ZZ -> M e. ( ZZ>= ` M ) ) |
63 |
44 62
|
syl |
|- ( ph -> M e. ( ZZ>= ` M ) ) |
64 |
6
|
a1i |
|- ( ph -> Z = ( ZZ>= ` M ) ) |
65 |
64
|
eqcomd |
|- ( ph -> ( ZZ>= ` M ) = Z ) |
66 |
63 65
|
eleqtrd |
|- ( ph -> M e. Z ) |
67 |
|
fvex |
|- ( E ` M ) e. _V |
68 |
|
difexg |
|- ( ( E ` M ) e. _V -> ( ( E ` M ) \ U_ i e. ( M ..^ M ) ( E ` i ) ) e. _V ) |
69 |
67 68
|
ax-mp |
|- ( ( E ` M ) \ U_ i e. ( M ..^ M ) ( E ` i ) ) e. _V |
70 |
69
|
a1i |
|- ( ph -> ( ( E ` M ) \ U_ i e. ( M ..^ M ) ( E ` i ) ) e. _V ) |
71 |
9 61 66 70
|
fvmptd3 |
|- ( ph -> ( F ` M ) = ( ( E ` M ) \ U_ i e. ( M ..^ M ) ( E ` i ) ) ) |
72 |
|
fzo0 |
|- ( M ..^ M ) = (/) |
73 |
|
iuneq1 |
|- ( ( M ..^ M ) = (/) -> U_ i e. ( M ..^ M ) ( E ` i ) = U_ i e. (/) ( E ` i ) ) |
74 |
72 73
|
ax-mp |
|- U_ i e. ( M ..^ M ) ( E ` i ) = U_ i e. (/) ( E ` i ) |
75 |
|
0iun |
|- U_ i e. (/) ( E ` i ) = (/) |
76 |
74 75
|
eqtri |
|- U_ i e. ( M ..^ M ) ( E ` i ) = (/) |
77 |
76
|
difeq2i |
|- ( ( E ` M ) \ U_ i e. ( M ..^ M ) ( E ` i ) ) = ( ( E ` M ) \ (/) ) |
78 |
77
|
a1i |
|- ( ph -> ( ( E ` M ) \ U_ i e. ( M ..^ M ) ( E ` i ) ) = ( ( E ` M ) \ (/) ) ) |
79 |
|
dif0 |
|- ( ( E ` M ) \ (/) ) = ( E ` M ) |
80 |
79
|
a1i |
|- ( ph -> ( ( E ` M ) \ (/) ) = ( E ` M ) ) |
81 |
71 78 80
|
3eqtrd |
|- ( ph -> ( F ` M ) = ( E ` M ) ) |
82 |
81
|
ineq2d |
|- ( ph -> ( A i^i ( F ` M ) ) = ( A i^i ( E ` M ) ) ) |
83 |
82
|
fveq2d |
|- ( ph -> ( O ` ( A i^i ( F ` M ) ) ) = ( O ` ( A i^i ( E ` M ) ) ) ) |
84 |
|
oveq2 |
|- ( n = M -> ( M ... n ) = ( M ... M ) ) |
85 |
84
|
iuneq1d |
|- ( n = M -> U_ i e. ( M ... n ) ( E ` i ) = U_ i e. ( M ... M ) ( E ` i ) ) |
86 |
|
ovex |
|- ( M ... M ) e. _V |
87 |
|
fvex |
|- ( E ` i ) e. _V |
88 |
86 87
|
iunex |
|- U_ i e. ( M ... M ) ( E ` i ) e. _V |
89 |
88
|
a1i |
|- ( ph -> U_ i e. ( M ... M ) ( E ` i ) e. _V ) |
90 |
8 85 66 89
|
fvmptd3 |
|- ( ph -> ( G ` M ) = U_ i e. ( M ... M ) ( E ` i ) ) |
91 |
46
|
iuneq1d |
|- ( ph -> U_ i e. ( M ... M ) ( E ` i ) = U_ i e. { M } ( E ` i ) ) |
92 |
|
fveq2 |
|- ( i = M -> ( E ` i ) = ( E ` M ) ) |
93 |
92
|
iunxsng |
|- ( M e. ZZ -> U_ i e. { M } ( E ` i ) = ( E ` M ) ) |
94 |
44 93
|
syl |
|- ( ph -> U_ i e. { M } ( E ` i ) = ( E ` M ) ) |
95 |
90 91 94
|
3eqtrd |
|- ( ph -> ( G ` M ) = ( E ` M ) ) |
96 |
95
|
ineq2d |
|- ( ph -> ( A i^i ( G ` M ) ) = ( A i^i ( E ` M ) ) ) |
97 |
96
|
fveq2d |
|- ( ph -> ( O ` ( A i^i ( G ` M ) ) ) = ( O ` ( A i^i ( E ` M ) ) ) ) |
98 |
57 83 97
|
3eqtr4d |
|- ( ph -> ( O ` ( A i^i ( F ` M ) ) ) = ( O ` ( A i^i ( G ` M ) ) ) ) |
99 |
47 56 98
|
3eqtrd |
|- ( ph -> sum_ n e. ( M ... M ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` M ) ) ) ) |
100 |
99
|
a1i |
|- ( K e. ( ZZ>= ` M ) -> ( ph -> sum_ n e. ( M ... M ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` M ) ) ) ) ) |
101 |
|
simp3 |
|- ( ( j e. ( M ..^ K ) /\ ( ph -> sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) /\ ph ) -> ph ) |
102 |
|
simp1 |
|- ( ( j e. ( M ..^ K ) /\ ( ph -> sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) /\ ph ) -> j e. ( M ..^ K ) ) |
103 |
|
id |
|- ( ( ph -> sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) -> ( ph -> sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) ) |
104 |
103
|
imp |
|- ( ( ( ph -> sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) /\ ph ) -> sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) |
105 |
104
|
3adant1 |
|- ( ( j e. ( M ..^ K ) /\ ( ph -> sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) /\ ph ) -> sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) |
106 |
|
elfzouz |
|- ( j e. ( M ..^ K ) -> j e. ( ZZ>= ` M ) ) |
107 |
106
|
adantl |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> j e. ( ZZ>= ` M ) ) |
108 |
1
|
adantr |
|- ( ( ph /\ n e. ( M ... ( j + 1 ) ) ) -> O e. OutMeas ) |
109 |
4
|
adantr |
|- ( ( ph /\ n e. ( M ... ( j + 1 ) ) ) -> A C_ X ) |
110 |
5
|
adantr |
|- ( ( ph /\ n e. ( M ... ( j + 1 ) ) ) -> ( O ` A ) e. RR ) |
111 |
|
inss1 |
|- ( A i^i ( F ` n ) ) C_ A |
112 |
111
|
a1i |
|- ( ( ph /\ n e. ( M ... ( j + 1 ) ) ) -> ( A i^i ( F ` n ) ) C_ A ) |
113 |
108 3 109 110 112
|
omessre |
|- ( ( ph /\ n e. ( M ... ( j + 1 ) ) ) -> ( O ` ( A i^i ( F ` n ) ) ) e. RR ) |
114 |
113
|
recnd |
|- ( ( ph /\ n e. ( M ... ( j + 1 ) ) ) -> ( O ` ( A i^i ( F ` n ) ) ) e. CC ) |
115 |
114
|
adantlr |
|- ( ( ( ph /\ j e. ( M ..^ K ) ) /\ n e. ( M ... ( j + 1 ) ) ) -> ( O ` ( A i^i ( F ` n ) ) ) e. CC ) |
116 |
|
fveq2 |
|- ( n = ( j + 1 ) -> ( F ` n ) = ( F ` ( j + 1 ) ) ) |
117 |
116
|
ineq2d |
|- ( n = ( j + 1 ) -> ( A i^i ( F ` n ) ) = ( A i^i ( F ` ( j + 1 ) ) ) ) |
118 |
117
|
fveq2d |
|- ( n = ( j + 1 ) -> ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( F ` ( j + 1 ) ) ) ) ) |
119 |
107 115 118
|
fsump1 |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> sum_ n e. ( M ... ( j + 1 ) ) ( O ` ( A i^i ( F ` n ) ) ) = ( sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) + ( O ` ( A i^i ( F ` ( j + 1 ) ) ) ) ) ) |
120 |
119
|
3adant3 |
|- ( ( ph /\ j e. ( M ..^ K ) /\ sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) -> sum_ n e. ( M ... ( j + 1 ) ) ( O ` ( A i^i ( F ` n ) ) ) = ( sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) + ( O ` ( A i^i ( F ` ( j + 1 ) ) ) ) ) ) |
121 |
|
oveq1 |
|- ( sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) -> ( sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) + ( O ` ( A i^i ( F ` ( j + 1 ) ) ) ) ) = ( ( O ` ( A i^i ( G ` j ) ) ) + ( O ` ( A i^i ( F ` ( j + 1 ) ) ) ) ) ) |
122 |
121
|
3ad2ant3 |
|- ( ( ph /\ j e. ( M ..^ K ) /\ sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) -> ( sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) + ( O ` ( A i^i ( F ` ( j + 1 ) ) ) ) ) = ( ( O ` ( A i^i ( G ` j ) ) ) + ( O ` ( A i^i ( F ` ( j + 1 ) ) ) ) ) ) |
123 |
|
fzssp1 |
|- ( M ... j ) C_ ( M ... ( j + 1 ) ) |
124 |
|
iunss1 |
|- ( ( M ... j ) C_ ( M ... ( j + 1 ) ) -> U_ i e. ( M ... j ) ( E ` i ) C_ U_ i e. ( M ... ( j + 1 ) ) ( E ` i ) ) |
125 |
123 124
|
ax-mp |
|- U_ i e. ( M ... j ) ( E ` i ) C_ U_ i e. ( M ... ( j + 1 ) ) ( E ` i ) |
126 |
125
|
a1i |
|- ( j e. ( M ..^ K ) -> U_ i e. ( M ... j ) ( E ` i ) C_ U_ i e. ( M ... ( j + 1 ) ) ( E ` i ) ) |
127 |
|
oveq2 |
|- ( n = j -> ( M ... n ) = ( M ... j ) ) |
128 |
127
|
iuneq1d |
|- ( n = j -> U_ i e. ( M ... n ) ( E ` i ) = U_ i e. ( M ... j ) ( E ` i ) ) |
129 |
106 6
|
eleqtrrdi |
|- ( j e. ( M ..^ K ) -> j e. Z ) |
130 |
|
ovex |
|- ( M ... j ) e. _V |
131 |
130 87
|
iunex |
|- U_ i e. ( M ... j ) ( E ` i ) e. _V |
132 |
131
|
a1i |
|- ( j e. ( M ..^ K ) -> U_ i e. ( M ... j ) ( E ` i ) e. _V ) |
133 |
8 128 129 132
|
fvmptd3 |
|- ( j e. ( M ..^ K ) -> ( G ` j ) = U_ i e. ( M ... j ) ( E ` i ) ) |
134 |
|
oveq2 |
|- ( n = ( j + 1 ) -> ( M ... n ) = ( M ... ( j + 1 ) ) ) |
135 |
134
|
iuneq1d |
|- ( n = ( j + 1 ) -> U_ i e. ( M ... n ) ( E ` i ) = U_ i e. ( M ... ( j + 1 ) ) ( E ` i ) ) |
136 |
|
peano2uz |
|- ( j e. ( ZZ>= ` M ) -> ( j + 1 ) e. ( ZZ>= ` M ) ) |
137 |
106 136
|
syl |
|- ( j e. ( M ..^ K ) -> ( j + 1 ) e. ( ZZ>= ` M ) ) |
138 |
6
|
eqcomi |
|- ( ZZ>= ` M ) = Z |
139 |
137 138
|
eleqtrdi |
|- ( j e. ( M ..^ K ) -> ( j + 1 ) e. Z ) |
140 |
|
ovex |
|- ( M ... ( j + 1 ) ) e. _V |
141 |
140 87
|
iunex |
|- U_ i e. ( M ... ( j + 1 ) ) ( E ` i ) e. _V |
142 |
141
|
a1i |
|- ( j e. ( M ..^ K ) -> U_ i e. ( M ... ( j + 1 ) ) ( E ` i ) e. _V ) |
143 |
8 135 139 142
|
fvmptd3 |
|- ( j e. ( M ..^ K ) -> ( G ` ( j + 1 ) ) = U_ i e. ( M ... ( j + 1 ) ) ( E ` i ) ) |
144 |
133 143
|
sseq12d |
|- ( j e. ( M ..^ K ) -> ( ( G ` j ) C_ ( G ` ( j + 1 ) ) <-> U_ i e. ( M ... j ) ( E ` i ) C_ U_ i e. ( M ... ( j + 1 ) ) ( E ` i ) ) ) |
145 |
126 144
|
mpbird |
|- ( j e. ( M ..^ K ) -> ( G ` j ) C_ ( G ` ( j + 1 ) ) ) |
146 |
|
inabs3 |
|- ( ( G ` j ) C_ ( G ` ( j + 1 ) ) -> ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) = ( A i^i ( G ` j ) ) ) |
147 |
145 146
|
syl |
|- ( j e. ( M ..^ K ) -> ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) = ( A i^i ( G ` j ) ) ) |
148 |
147
|
fveq2d |
|- ( j e. ( M ..^ K ) -> ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) |
149 |
148
|
eqcomd |
|- ( j e. ( M ..^ K ) -> ( O ` ( A i^i ( G ` j ) ) ) = ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) ) ) |
150 |
149
|
adantl |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( O ` ( A i^i ( G ` j ) ) ) = ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) ) ) |
151 |
|
elfzoelz |
|- ( j e. ( M ..^ K ) -> j e. ZZ ) |
152 |
|
fzval3 |
|- ( j e. ZZ -> ( M ... j ) = ( M ..^ ( j + 1 ) ) ) |
153 |
151 152
|
syl |
|- ( j e. ( M ..^ K ) -> ( M ... j ) = ( M ..^ ( j + 1 ) ) ) |
154 |
153
|
eqcomd |
|- ( j e. ( M ..^ K ) -> ( M ..^ ( j + 1 ) ) = ( M ... j ) ) |
155 |
154
|
iuneq1d |
|- ( j e. ( M ..^ K ) -> U_ i e. ( M ..^ ( j + 1 ) ) ( E ` i ) = U_ i e. ( M ... j ) ( E ` i ) ) |
156 |
155
|
difeq2d |
|- ( j e. ( M ..^ K ) -> ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ..^ ( j + 1 ) ) ( E ` i ) ) = ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ... j ) ( E ` i ) ) ) |
157 |
156
|
adantl |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ..^ ( j + 1 ) ) ( E ` i ) ) = ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ... j ) ( E ` i ) ) ) |
158 |
|
fveq2 |
|- ( n = ( j + 1 ) -> ( E ` n ) = ( E ` ( j + 1 ) ) ) |
159 |
|
oveq2 |
|- ( n = ( j + 1 ) -> ( M ..^ n ) = ( M ..^ ( j + 1 ) ) ) |
160 |
159
|
iuneq1d |
|- ( n = ( j + 1 ) -> U_ i e. ( M ..^ n ) ( E ` i ) = U_ i e. ( M ..^ ( j + 1 ) ) ( E ` i ) ) |
161 |
158 160
|
difeq12d |
|- ( n = ( j + 1 ) -> ( ( E ` n ) \ U_ i e. ( M ..^ n ) ( E ` i ) ) = ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ..^ ( j + 1 ) ) ( E ` i ) ) ) |
162 |
|
fvex |
|- ( E ` ( j + 1 ) ) e. _V |
163 |
|
difexg |
|- ( ( E ` ( j + 1 ) ) e. _V -> ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ..^ ( j + 1 ) ) ( E ` i ) ) e. _V ) |
164 |
162 163
|
ax-mp |
|- ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ..^ ( j + 1 ) ) ( E ` i ) ) e. _V |
165 |
164
|
a1i |
|- ( j e. ( M ..^ K ) -> ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ..^ ( j + 1 ) ) ( E ` i ) ) e. _V ) |
166 |
9 161 139 165
|
fvmptd3 |
|- ( j e. ( M ..^ K ) -> ( F ` ( j + 1 ) ) = ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ..^ ( j + 1 ) ) ( E ` i ) ) ) |
167 |
166
|
adantl |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( F ` ( j + 1 ) ) = ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ..^ ( j + 1 ) ) ( E ` i ) ) ) |
168 |
|
nfcv |
|- F/_ i ( E ` ( j + 1 ) ) |
169 |
|
fveq2 |
|- ( i = ( j + 1 ) -> ( E ` i ) = ( E ` ( j + 1 ) ) ) |
170 |
168 106 169
|
iunp1 |
|- ( j e. ( M ..^ K ) -> U_ i e. ( M ... ( j + 1 ) ) ( E ` i ) = ( U_ i e. ( M ... j ) ( E ` i ) u. ( E ` ( j + 1 ) ) ) ) |
171 |
143 170
|
eqtrd |
|- ( j e. ( M ..^ K ) -> ( G ` ( j + 1 ) ) = ( U_ i e. ( M ... j ) ( E ` i ) u. ( E ` ( j + 1 ) ) ) ) |
172 |
171 133
|
difeq12d |
|- ( j e. ( M ..^ K ) -> ( ( G ` ( j + 1 ) ) \ ( G ` j ) ) = ( ( U_ i e. ( M ... j ) ( E ` i ) u. ( E ` ( j + 1 ) ) ) \ U_ i e. ( M ... j ) ( E ` i ) ) ) |
173 |
|
difundir |
|- ( ( U_ i e. ( M ... j ) ( E ` i ) u. ( E ` ( j + 1 ) ) ) \ U_ i e. ( M ... j ) ( E ` i ) ) = ( ( U_ i e. ( M ... j ) ( E ` i ) \ U_ i e. ( M ... j ) ( E ` i ) ) u. ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ... j ) ( E ` i ) ) ) |
174 |
|
difid |
|- ( U_ i e. ( M ... j ) ( E ` i ) \ U_ i e. ( M ... j ) ( E ` i ) ) = (/) |
175 |
174
|
uneq1i |
|- ( ( U_ i e. ( M ... j ) ( E ` i ) \ U_ i e. ( M ... j ) ( E ` i ) ) u. ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ... j ) ( E ` i ) ) ) = ( (/) u. ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ... j ) ( E ` i ) ) ) |
176 |
|
0un |
|- ( (/) u. ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ... j ) ( E ` i ) ) ) = ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ... j ) ( E ` i ) ) |
177 |
173 175 176
|
3eqtri |
|- ( ( U_ i e. ( M ... j ) ( E ` i ) u. ( E ` ( j + 1 ) ) ) \ U_ i e. ( M ... j ) ( E ` i ) ) = ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ... j ) ( E ` i ) ) |
178 |
177
|
a1i |
|- ( j e. ( M ..^ K ) -> ( ( U_ i e. ( M ... j ) ( E ` i ) u. ( E ` ( j + 1 ) ) ) \ U_ i e. ( M ... j ) ( E ` i ) ) = ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ... j ) ( E ` i ) ) ) |
179 |
172 178
|
eqtrd |
|- ( j e. ( M ..^ K ) -> ( ( G ` ( j + 1 ) ) \ ( G ` j ) ) = ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ... j ) ( E ` i ) ) ) |
180 |
179
|
adantl |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( ( G ` ( j + 1 ) ) \ ( G ` j ) ) = ( ( E ` ( j + 1 ) ) \ U_ i e. ( M ... j ) ( E ` i ) ) ) |
181 |
157 167 180
|
3eqtr4d |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( F ` ( j + 1 ) ) = ( ( G ` ( j + 1 ) ) \ ( G ` j ) ) ) |
182 |
181
|
ineq2d |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( A i^i ( F ` ( j + 1 ) ) ) = ( A i^i ( ( G ` ( j + 1 ) ) \ ( G ` j ) ) ) ) |
183 |
|
indif2 |
|- ( A i^i ( ( G ` ( j + 1 ) ) \ ( G ` j ) ) ) = ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) |
184 |
183
|
eqcomi |
|- ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) = ( A i^i ( ( G ` ( j + 1 ) ) \ ( G ` j ) ) ) |
185 |
184
|
a1i |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) = ( A i^i ( ( G ` ( j + 1 ) ) \ ( G ` j ) ) ) ) |
186 |
182 185
|
eqtr4d |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( A i^i ( F ` ( j + 1 ) ) ) = ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) ) |
187 |
186
|
fveq2d |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( O ` ( A i^i ( F ` ( j + 1 ) ) ) ) = ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) ) ) |
188 |
150 187
|
oveq12d |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( ( O ` ( A i^i ( G ` j ) ) ) + ( O ` ( A i^i ( F ` ( j + 1 ) ) ) ) ) = ( ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) ) + ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) ) ) ) |
189 |
|
inss1 |
|- ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) C_ ( A i^i ( G ` ( j + 1 ) ) ) |
190 |
|
inss1 |
|- ( A i^i ( G ` ( j + 1 ) ) ) C_ A |
191 |
189 190
|
sstri |
|- ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) C_ A |
192 |
191
|
a1i |
|- ( ph -> ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) C_ A ) |
193 |
1 3 4 5 192
|
omessre |
|- ( ph -> ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) ) e. RR ) |
194 |
193
|
adantr |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) ) e. RR ) |
195 |
1
|
adantr |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> O e. OutMeas ) |
196 |
4
|
adantr |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> A C_ X ) |
197 |
5
|
adantr |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( O ` A ) e. RR ) |
198 |
|
difss |
|- ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) C_ ( A i^i ( G ` ( j + 1 ) ) ) |
199 |
198 190
|
sstri |
|- ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) C_ A |
200 |
199
|
a1i |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) C_ A ) |
201 |
195 3 196 197 200
|
omessre |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) ) e. RR ) |
202 |
|
rexadd |
|- ( ( ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) ) e. RR /\ ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) ) e. RR ) -> ( ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) ) +e ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) ) ) = ( ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) ) + ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) ) ) ) |
203 |
194 201 202
|
syl2anc |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) ) +e ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) ) ) = ( ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) ) + ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) ) ) ) |
204 |
203
|
eqcomd |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) ) + ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) ) ) = ( ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) ) +e ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) ) ) ) |
205 |
133
|
adantl |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( G ` j ) = U_ i e. ( M ... j ) ( E ` i ) ) |
206 |
|
nfv |
|- F/ i ph |
207 |
|
fzfid |
|- ( ph -> ( M ... j ) e. Fin ) |
208 |
7
|
adantr |
|- ( ( ph /\ i e. ( M ... j ) ) -> E : Z --> S ) |
209 |
|
elfzuz |
|- ( i e. ( M ... j ) -> i e. ( ZZ>= ` M ) ) |
210 |
138
|
a1i |
|- ( i e. ( M ... j ) -> ( ZZ>= ` M ) = Z ) |
211 |
209 210
|
eleqtrd |
|- ( i e. ( M ... j ) -> i e. Z ) |
212 |
211
|
adantl |
|- ( ( ph /\ i e. ( M ... j ) ) -> i e. Z ) |
213 |
208 212
|
ffvelrnd |
|- ( ( ph /\ i e. ( M ... j ) ) -> ( E ` i ) e. S ) |
214 |
206 1 2 207 213
|
caragenfiiuncl |
|- ( ph -> U_ i e. ( M ... j ) ( E ` i ) e. S ) |
215 |
214
|
adantr |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> U_ i e. ( M ... j ) ( E ` i ) e. S ) |
216 |
205 215
|
eqeltrd |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( G ` j ) e. S ) |
217 |
4
|
ssinss1d |
|- ( ph -> ( A i^i ( G ` ( j + 1 ) ) ) C_ X ) |
218 |
217
|
adantr |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( A i^i ( G ` ( j + 1 ) ) ) C_ X ) |
219 |
195 2 3 216 218
|
caragensplit |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) i^i ( G ` j ) ) ) +e ( O ` ( ( A i^i ( G ` ( j + 1 ) ) ) \ ( G ` j ) ) ) ) = ( O ` ( A i^i ( G ` ( j + 1 ) ) ) ) ) |
220 |
188 204 219
|
3eqtrd |
|- ( ( ph /\ j e. ( M ..^ K ) ) -> ( ( O ` ( A i^i ( G ` j ) ) ) + ( O ` ( A i^i ( F ` ( j + 1 ) ) ) ) ) = ( O ` ( A i^i ( G ` ( j + 1 ) ) ) ) ) |
221 |
220
|
3adant3 |
|- ( ( ph /\ j e. ( M ..^ K ) /\ sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) -> ( ( O ` ( A i^i ( G ` j ) ) ) + ( O ` ( A i^i ( F ` ( j + 1 ) ) ) ) ) = ( O ` ( A i^i ( G ` ( j + 1 ) ) ) ) ) |
222 |
120 122 221
|
3eqtrd |
|- ( ( ph /\ j e. ( M ..^ K ) /\ sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) -> sum_ n e. ( M ... ( j + 1 ) ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` ( j + 1 ) ) ) ) ) |
223 |
101 102 105 222
|
syl3anc |
|- ( ( j e. ( M ..^ K ) /\ ( ph -> sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) /\ ph ) -> sum_ n e. ( M ... ( j + 1 ) ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` ( j + 1 ) ) ) ) ) |
224 |
223
|
3exp |
|- ( j e. ( M ..^ K ) -> ( ( ph -> sum_ n e. ( M ... j ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` j ) ) ) ) -> ( ph -> sum_ n e. ( M ... ( j + 1 ) ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` ( j + 1 ) ) ) ) ) ) ) |
225 |
21 28 35 42 100 224
|
fzind2 |
|- ( K e. ( M ... K ) -> ( ph -> sum_ n e. ( M ... K ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` K ) ) ) ) ) |
226 |
13 14 225
|
sylc |
|- ( ph -> sum_ n e. ( M ... K ) ( O ` ( A i^i ( F ` n ) ) ) = ( O ` ( A i^i ( G ` K ) ) ) ) |