Step |
Hyp |
Ref |
Expression |
1 |
|
omeiunltfirp.o |
|
2 |
|
omeiunltfirp.x |
|
3 |
|
omeiunltfirp.z |
|
4 |
|
omeiunltfirp.e |
|
5 |
|
omeiunltfirp.re |
|
6 |
|
omeiunltfirp.y |
|
7 |
3
|
fvexi |
|
8 |
7
|
a1i |
|
9 |
1
|
adantr |
|
10 |
4
|
ffvelrnda |
|
11 |
|
fvex |
|
12 |
11
|
elpw |
|
13 |
10 12
|
sylib |
|
14 |
9 2 13
|
omecl |
|
15 |
|
eqid |
|
16 |
14 15
|
fmptd |
|
17 |
16
|
adantr |
|
18 |
|
simpr |
|
19 |
5
|
adantr |
|
20 |
8 17 18 19
|
sge0pnffigt |
|
21 |
|
simpl |
|
22 |
|
simpr |
|
23 |
|
elpwinss |
|
24 |
23
|
resmptd |
|
25 |
24
|
fveq2d |
|
26 |
25
|
adantr |
|
27 |
22 26
|
breqtrd |
|
28 |
27
|
adantll |
|
29 |
5
|
rexrd |
|
30 |
29
|
ad2antrr |
|
31 |
|
simpr |
|
32 |
1
|
ad2antrr |
|
33 |
4
|
ad2antrr |
|
34 |
23
|
adantr |
|
35 |
|
simpr |
|
36 |
34 35
|
sseldd |
|
37 |
36
|
adantll |
|
38 |
33 37
|
ffvelrnd |
|
39 |
38 12
|
sylib |
|
40 |
32 2 39
|
omecl |
|
41 |
|
eqid |
|
42 |
40 41
|
fmptd |
|
43 |
31 42
|
sge0xrcl |
|
44 |
43
|
adantr |
|
45 |
|
elinel2 |
|
46 |
45
|
adantl |
|
47 |
|
rge0ssre |
|
48 |
|
0xr |
|
49 |
48
|
a1i |
|
50 |
|
pnfxr |
|
51 |
50
|
a1i |
|
52 |
32 2 39
|
omexrcl |
|
53 |
|
iccgelb |
|
54 |
49 51 40 53
|
syl3anc |
|
55 |
13
|
ralrimiva |
|
56 |
|
iunss |
|
57 |
55 56
|
sylibr |
|
58 |
57
|
ad2antrr |
|
59 |
32 2 58
|
omexrcl |
|
60 |
|
ssiun2 |
|
61 |
37 60
|
syl |
|
62 |
32 2 58 61
|
omessle |
|
63 |
5
|
ltpnfd |
|
64 |
63
|
ad2antrr |
|
65 |
52 59 51 62 64
|
xrlelttrd |
|
66 |
49 51 52 54 65
|
elicod |
|
67 |
47 66
|
sselid |
|
68 |
46 67
|
fsumrecl |
|
69 |
6
|
rpred |
|
70 |
69
|
adantr |
|
71 |
68 70
|
readdcld |
|
72 |
71
|
rexrd |
|
73 |
72
|
adantr |
|
74 |
|
simpr |
|
75 |
66 41
|
fmptd |
|
76 |
46 75
|
sge0fsum |
|
77 |
|
eqidd |
|
78 |
|
2fveq3 |
|
79 |
78
|
adantl |
|
80 |
|
simpr |
|
81 |
|
fvexd |
|
82 |
77 79 80 81
|
fvmptd |
|
83 |
82
|
sumeq2dv |
|
84 |
|
2fveq3 |
|
85 |
84
|
cbvsumv |
|
86 |
85
|
a1i |
|
87 |
76 83 86
|
3eqtrd |
|
88 |
6
|
adantr |
|
89 |
68 88
|
ltaddrpd |
|
90 |
87 89
|
eqbrtrd |
|
91 |
90
|
adantr |
|
92 |
30 44 73 74 91
|
xrlttrd |
|
93 |
21 28 92
|
syl2anc |
|
94 |
93
|
ex |
|
95 |
94
|
adantlr |
|
96 |
95
|
reximdva |
|
97 |
20 96
|
mpd |
|
98 |
|
simpl |
|
99 |
|
simpr |
|
100 |
7
|
a1i |
|
101 |
100 16
|
sge0repnf |
|
102 |
101
|
adantr |
|
103 |
99 102
|
mpbird |
|
104 |
|
nfv |
|
105 |
|
nfcv |
|
106 |
|
nfmpt1 |
|
107 |
105 106
|
nffv |
|
108 |
|
nfcv |
|
109 |
107 108
|
nfel |
|
110 |
104 109
|
nfan |
|
111 |
7
|
a1i |
|
112 |
14
|
adantlr |
|
113 |
6
|
adantr |
|
114 |
|
simpr |
|
115 |
110 111 112 113 114
|
sge0ltfirpmpt |
|
116 |
5
|
ad3antrrr |
|
117 |
114
|
ad2antrr |
|
118 |
71
|
ad4ant13 |
|
119 |
|
nfcv |
|
120 |
104 119 1 2 3 4
|
omeiunle |
|
121 |
120
|
ad3antrrr |
|
122 |
|
simpr |
|
123 |
|
simpll |
|
124 |
|
2fveq3 |
|
125 |
124
|
cbvmptv |
|
126 |
125
|
fveq2i |
|
127 |
126
|
eleq1i |
|
128 |
127
|
biimpi |
|
129 |
128
|
ad2antlr |
|
130 |
|
simpr |
|
131 |
45
|
adantl |
|
132 |
66
|
adantllr |
|
133 |
131 132
|
sge0fsummpt |
|
134 |
123 129 130 133
|
syl21anc |
|
135 |
134
|
oveq1d |
|
136 |
135
|
adantr |
|
137 |
122 136
|
breqtrd |
|
138 |
116 117 118 121 137
|
lelttrd |
|
139 |
138
|
ex |
|
140 |
139
|
reximdva |
|
141 |
115 140
|
mpd |
|
142 |
98 103 141
|
syl2anc |
|
143 |
97 142
|
pm2.61dan |
|