Metamath Proof Explorer


Theorem omeiunltfirp

Description: If the outer measure of a countable union is not +oo , then it can be arbitrarily approximated by finite sums of outer measures. (Contributed by Glauco Siliprandi, 17-Aug-2020)

Ref Expression
Hypotheses omeiunltfirp.o φ O OutMeas
omeiunltfirp.x X = dom O
omeiunltfirp.z Z = N
omeiunltfirp.e φ E : Z 𝒫 X
omeiunltfirp.re φ O n Z E n
omeiunltfirp.y φ Y +
Assertion omeiunltfirp φ z 𝒫 Z Fin O n Z E n < n z O E n + Y

Proof

Step Hyp Ref Expression
1 omeiunltfirp.o φ O OutMeas
2 omeiunltfirp.x X = dom O
3 omeiunltfirp.z Z = N
4 omeiunltfirp.e φ E : Z 𝒫 X
5 omeiunltfirp.re φ O n Z E n
6 omeiunltfirp.y φ Y +
7 3 fvexi Z V
8 7 a1i φ sum^ n Z O E n = +∞ Z V
9 1 adantr φ n Z O OutMeas
10 4 ffvelrnda φ n Z E n 𝒫 X
11 fvex E n V
12 11 elpw E n 𝒫 X E n X
13 10 12 sylib φ n Z E n X
14 9 2 13 omecl φ n Z O E n 0 +∞
15 eqid n Z O E n = n Z O E n
16 14 15 fmptd φ n Z O E n : Z 0 +∞
17 16 adantr φ sum^ n Z O E n = +∞ n Z O E n : Z 0 +∞
18 simpr φ sum^ n Z O E n = +∞ sum^ n Z O E n = +∞
19 5 adantr φ sum^ n Z O E n = +∞ O n Z E n
20 8 17 18 19 sge0pnffigt φ sum^ n Z O E n = +∞ z 𝒫 Z Fin O n Z E n < sum^ n Z O E n z
21 simpl φ z 𝒫 Z Fin O n Z E n < sum^ n Z O E n z φ z 𝒫 Z Fin
22 simpr z 𝒫 Z Fin O n Z E n < sum^ n Z O E n z O n Z E n < sum^ n Z O E n z
23 elpwinss z 𝒫 Z Fin z Z
24 23 resmptd z 𝒫 Z Fin n Z O E n z = n z O E n
25 24 fveq2d z 𝒫 Z Fin sum^ n Z O E n z = sum^ n z O E n
26 25 adantr z 𝒫 Z Fin O n Z E n < sum^ n Z O E n z sum^ n Z O E n z = sum^ n z O E n
27 22 26 breqtrd z 𝒫 Z Fin O n Z E n < sum^ n Z O E n z O n Z E n < sum^ n z O E n
28 27 adantll φ z 𝒫 Z Fin O n Z E n < sum^ n Z O E n z O n Z E n < sum^ n z O E n
29 5 rexrd φ O n Z E n *
30 29 ad2antrr φ z 𝒫 Z Fin O n Z E n < sum^ n z O E n O n Z E n *
31 simpr φ z 𝒫 Z Fin z 𝒫 Z Fin
32 1 ad2antrr φ z 𝒫 Z Fin n z O OutMeas
33 4 ad2antrr φ z 𝒫 Z Fin n z E : Z 𝒫 X
34 23 adantr z 𝒫 Z Fin n z z Z
35 simpr z 𝒫 Z Fin n z n z
36 34 35 sseldd z 𝒫 Z Fin n z n Z
37 36 adantll φ z 𝒫 Z Fin n z n Z
38 33 37 ffvelrnd φ z 𝒫 Z Fin n z E n 𝒫 X
39 38 12 sylib φ z 𝒫 Z Fin n z E n X
40 32 2 39 omecl φ z 𝒫 Z Fin n z O E n 0 +∞
41 eqid n z O E n = n z O E n
42 40 41 fmptd φ z 𝒫 Z Fin n z O E n : z 0 +∞
43 31 42 sge0xrcl φ z 𝒫 Z Fin sum^ n z O E n *
44 43 adantr φ z 𝒫 Z Fin O n Z E n < sum^ n z O E n sum^ n z O E n *
45 elinel2 z 𝒫 Z Fin z Fin
46 45 adantl φ z 𝒫 Z Fin z Fin
47 rge0ssre 0 +∞
48 0xr 0 *
49 48 a1i φ z 𝒫 Z Fin n z 0 *
50 pnfxr +∞ *
51 50 a1i φ z 𝒫 Z Fin n z +∞ *
52 32 2 39 omexrcl φ z 𝒫 Z Fin n z O E n *
53 iccgelb 0 * +∞ * O E n 0 +∞ 0 O E n
54 49 51 40 53 syl3anc φ z 𝒫 Z Fin n z 0 O E n
55 13 ralrimiva φ n Z E n X
56 iunss n Z E n X n Z E n X
57 55 56 sylibr φ n Z E n X
58 57 ad2antrr φ z 𝒫 Z Fin n z n Z E n X
59 32 2 58 omexrcl φ z 𝒫 Z Fin n z O n Z E n *
60 ssiun2 n Z E n n Z E n
61 37 60 syl φ z 𝒫 Z Fin n z E n n Z E n
62 32 2 58 61 omessle φ z 𝒫 Z Fin n z O E n O n Z E n
63 5 ltpnfd φ O n Z E n < +∞
64 63 ad2antrr φ z 𝒫 Z Fin n z O n Z E n < +∞
65 52 59 51 62 64 xrlelttrd φ z 𝒫 Z Fin n z O E n < +∞
66 49 51 52 54 65 elicod φ z 𝒫 Z Fin n z O E n 0 +∞
67 47 66 sselid φ z 𝒫 Z Fin n z O E n
68 46 67 fsumrecl φ z 𝒫 Z Fin n z O E n
69 6 rpred φ Y
70 69 adantr φ z 𝒫 Z Fin Y
71 68 70 readdcld φ z 𝒫 Z Fin n z O E n + Y
72 71 rexrd φ z 𝒫 Z Fin n z O E n + Y *
73 72 adantr φ z 𝒫 Z Fin O n Z E n < sum^ n z O E n n z O E n + Y *
74 simpr φ z 𝒫 Z Fin O n Z E n < sum^ n z O E n O n Z E n < sum^ n z O E n
75 66 41 fmptd φ z 𝒫 Z Fin n z O E n : z 0 +∞
76 46 75 sge0fsum φ z 𝒫 Z Fin sum^ n z O E n = k z n z O E n k
77 eqidd φ z 𝒫 Z Fin k z n z O E n = n z O E n
78 2fveq3 n = k O E n = O E k
79 78 adantl φ z 𝒫 Z Fin k z n = k O E n = O E k
80 simpr φ z 𝒫 Z Fin k z k z
81 fvexd φ z 𝒫 Z Fin k z O E k V
82 77 79 80 81 fvmptd φ z 𝒫 Z Fin k z n z O E n k = O E k
83 82 sumeq2dv φ z 𝒫 Z Fin k z n z O E n k = k z O E k
84 2fveq3 k = n O E k = O E n
85 84 cbvsumv k z O E k = n z O E n
86 85 a1i φ z 𝒫 Z Fin k z O E k = n z O E n
87 76 83 86 3eqtrd φ z 𝒫 Z Fin sum^ n z O E n = n z O E n
88 6 adantr φ z 𝒫 Z Fin Y +
89 68 88 ltaddrpd φ z 𝒫 Z Fin n z O E n < n z O E n + Y
90 87 89 eqbrtrd φ z 𝒫 Z Fin sum^ n z O E n < n z O E n + Y
91 90 adantr φ z 𝒫 Z Fin O n Z E n < sum^ n z O E n sum^ n z O E n < n z O E n + Y
92 30 44 73 74 91 xrlttrd φ z 𝒫 Z Fin O n Z E n < sum^ n z O E n O n Z E n < n z O E n + Y
93 21 28 92 syl2anc φ z 𝒫 Z Fin O n Z E n < sum^ n Z O E n z O n Z E n < n z O E n + Y
94 93 ex φ z 𝒫 Z Fin O n Z E n < sum^ n Z O E n z O n Z E n < n z O E n + Y
95 94 adantlr φ sum^ n Z O E n = +∞ z 𝒫 Z Fin O n Z E n < sum^ n Z O E n z O n Z E n < n z O E n + Y
96 95 reximdva φ sum^ n Z O E n = +∞ z 𝒫 Z Fin O n Z E n < sum^ n Z O E n z z 𝒫 Z Fin O n Z E n < n z O E n + Y
97 20 96 mpd φ sum^ n Z O E n = +∞ z 𝒫 Z Fin O n Z E n < n z O E n + Y
98 simpl φ ¬ sum^ n Z O E n = +∞ φ
99 simpr φ ¬ sum^ n Z O E n = +∞ ¬ sum^ n Z O E n = +∞
100 7 a1i φ Z V
101 100 16 sge0repnf φ sum^ n Z O E n ¬ sum^ n Z O E n = +∞
102 101 adantr φ ¬ sum^ n Z O E n = +∞ sum^ n Z O E n ¬ sum^ n Z O E n = +∞
103 99 102 mpbird φ ¬ sum^ n Z O E n = +∞ sum^ n Z O E n
104 nfv n φ
105 nfcv _ n sum^
106 nfmpt1 _ n n Z O E n
107 105 106 nffv _ n sum^ n Z O E n
108 nfcv _ n
109 107 108 nfel n sum^ n Z O E n
110 104 109 nfan n φ sum^ n Z O E n
111 7 a1i φ sum^ n Z O E n Z V
112 14 adantlr φ sum^ n Z O E n n Z O E n 0 +∞
113 6 adantr φ sum^ n Z O E n Y +
114 simpr φ sum^ n Z O E n sum^ n Z O E n
115 110 111 112 113 114 sge0ltfirpmpt φ sum^ n Z O E n z 𝒫 Z Fin sum^ n Z O E n < sum^ n z O E n + Y
116 5 ad3antrrr φ sum^ n Z O E n z 𝒫 Z Fin sum^ n Z O E n < sum^ n z O E n + Y O n Z E n
117 114 ad2antrr φ sum^ n Z O E n z 𝒫 Z Fin sum^ n Z O E n < sum^ n z O E n + Y sum^ n Z O E n
118 71 ad4ant13 φ sum^ n Z O E n z 𝒫 Z Fin sum^ n Z O E n < sum^ n z O E n + Y n z O E n + Y
119 nfcv _ n E
120 104 119 1 2 3 4 omeiunle φ O n Z E n sum^ n Z O E n
121 120 ad3antrrr φ sum^ n Z O E n z 𝒫 Z Fin sum^ n Z O E n < sum^ n z O E n + Y O n Z E n sum^ n Z O E n
122 simpr φ sum^ n Z O E n z 𝒫 Z Fin sum^ n Z O E n < sum^ n z O E n + Y sum^ n Z O E n < sum^ n z O E n + Y
123 simpll φ sum^ n Z O E n z 𝒫 Z Fin φ
124 2fveq3 n = m O E n = O E m
125 124 cbvmptv n Z O E n = m Z O E m
126 125 fveq2i sum^ n Z O E n = sum^ m Z O E m
127 126 eleq1i sum^ n Z O E n sum^ m Z O E m
128 127 biimpi sum^ n Z O E n sum^ m Z O E m
129 128 ad2antlr φ sum^ n Z O E n z 𝒫 Z Fin sum^ m Z O E m
130 simpr φ sum^ n Z O E n z 𝒫 Z Fin z 𝒫 Z Fin
131 45 adantl φ sum^ m Z O E m z 𝒫 Z Fin z Fin
132 66 adantllr φ sum^ m Z O E m z 𝒫 Z Fin n z O E n 0 +∞
133 131 132 sge0fsummpt φ sum^ m Z O E m z 𝒫 Z Fin sum^ n z O E n = n z O E n
134 123 129 130 133 syl21anc φ sum^ n Z O E n z 𝒫 Z Fin sum^ n z O E n = n z O E n
135 134 oveq1d φ sum^ n Z O E n z 𝒫 Z Fin sum^ n z O E n + Y = n z O E n + Y
136 135 adantr φ sum^ n Z O E n z 𝒫 Z Fin sum^ n Z O E n < sum^ n z O E n + Y sum^ n z O E n + Y = n z O E n + Y
137 122 136 breqtrd φ sum^ n Z O E n z 𝒫 Z Fin sum^ n Z O E n < sum^ n z O E n + Y sum^ n Z O E n < n z O E n + Y
138 116 117 118 121 137 lelttrd φ sum^ n Z O E n z 𝒫 Z Fin sum^ n Z O E n < sum^ n z O E n + Y O n Z E n < n z O E n + Y
139 138 ex φ sum^ n Z O E n z 𝒫 Z Fin sum^ n Z O E n < sum^ n z O E n + Y O n Z E n < n z O E n + Y
140 139 reximdva φ sum^ n Z O E n z 𝒫 Z Fin sum^ n Z O E n < sum^ n z O E n + Y z 𝒫 Z Fin O n Z E n < n z O E n + Y
141 115 140 mpd φ sum^ n Z O E n z 𝒫 Z Fin O n Z E n < n z O E n + Y
142 98 103 141 syl2anc φ ¬ sum^ n Z O E n = +∞ z 𝒫 Z Fin O n Z E n < n z O E n + Y
143 97 142 pm2.61dan φ z 𝒫 Z Fin O n Z E n < n z O E n + Y