Step |
Hyp |
Ref |
Expression |
1 |
|
0ome.1 |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
2 |
|
0ome.2 |
⊢ 𝑂 = ( 𝑥 ∈ 𝒫 𝑋 ↦ 0 ) |
3 |
|
eqid |
⊢ ( 𝑦 ∈ 𝒫 𝑋 ↦ 0 ) = ( 𝑦 ∈ 𝒫 𝑋 ↦ 0 ) |
4 |
|
0e0iccpnf |
⊢ 0 ∈ ( 0 [,] +∞ ) |
5 |
4
|
a1i |
⊢ ( 𝑦 ∈ 𝒫 𝑋 → 0 ∈ ( 0 [,] +∞ ) ) |
6 |
3 5
|
fmpti |
⊢ ( 𝑦 ∈ 𝒫 𝑋 ↦ 0 ) : 𝒫 𝑋 ⟶ ( 0 [,] +∞ ) |
7 |
|
eqidd |
⊢ ( 𝑥 = 𝑦 → 0 = 0 ) |
8 |
7
|
cbvmptv |
⊢ ( 𝑥 ∈ 𝒫 𝑋 ↦ 0 ) = ( 𝑦 ∈ 𝒫 𝑋 ↦ 0 ) |
9 |
2 8
|
eqtri |
⊢ 𝑂 = ( 𝑦 ∈ 𝒫 𝑋 ↦ 0 ) |
10 |
9
|
feq1i |
⊢ ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ↔ ( 𝑦 ∈ 𝒫 𝑋 ↦ 0 ) : dom 𝑂 ⟶ ( 0 [,] +∞ ) ) |
11 |
9
|
dmeqi |
⊢ dom 𝑂 = dom ( 𝑦 ∈ 𝒫 𝑋 ↦ 0 ) |
12 |
|
0re |
⊢ 0 ∈ ℝ |
13 |
12
|
rgenw |
⊢ ∀ 𝑦 ∈ 𝒫 𝑋 0 ∈ ℝ |
14 |
|
dmmptg |
⊢ ( ∀ 𝑦 ∈ 𝒫 𝑋 0 ∈ ℝ → dom ( 𝑦 ∈ 𝒫 𝑋 ↦ 0 ) = 𝒫 𝑋 ) |
15 |
13 14
|
ax-mp |
⊢ dom ( 𝑦 ∈ 𝒫 𝑋 ↦ 0 ) = 𝒫 𝑋 |
16 |
11 15
|
eqtri |
⊢ dom 𝑂 = 𝒫 𝑋 |
17 |
16
|
feq2i |
⊢ ( ( 𝑦 ∈ 𝒫 𝑋 ↦ 0 ) : dom 𝑂 ⟶ ( 0 [,] +∞ ) ↔ ( 𝑦 ∈ 𝒫 𝑋 ↦ 0 ) : 𝒫 𝑋 ⟶ ( 0 [,] +∞ ) ) |
18 |
10 17
|
bitri |
⊢ ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ↔ ( 𝑦 ∈ 𝒫 𝑋 ↦ 0 ) : 𝒫 𝑋 ⟶ ( 0 [,] +∞ ) ) |
19 |
6 18
|
mpbir |
⊢ 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) |
20 |
|
unipw |
⊢ ∪ 𝒫 𝑋 = 𝑋 |
21 |
20
|
pweqi |
⊢ 𝒫 ∪ 𝒫 𝑋 = 𝒫 𝑋 |
22 |
21
|
eqcomi |
⊢ 𝒫 𝑋 = 𝒫 ∪ 𝒫 𝑋 |
23 |
16
|
eqcomi |
⊢ 𝒫 𝑋 = dom 𝑂 |
24 |
23
|
unieqi |
⊢ ∪ 𝒫 𝑋 = ∪ dom 𝑂 |
25 |
24
|
pweqi |
⊢ 𝒫 ∪ 𝒫 𝑋 = 𝒫 ∪ dom 𝑂 |
26 |
16 22 25
|
3eqtri |
⊢ dom 𝑂 = 𝒫 ∪ dom 𝑂 |
27 |
19 26
|
pm3.2i |
⊢ ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂 ) |
28 |
|
0elpw |
⊢ ∅ ∈ 𝒫 𝑋 |
29 |
|
eqidd |
⊢ ( 𝑦 = ∅ → 0 = 0 ) |
30 |
12
|
elexi |
⊢ 0 ∈ V |
31 |
29 9 30
|
fvmpt |
⊢ ( ∅ ∈ 𝒫 𝑋 → ( 𝑂 ‘ ∅ ) = 0 ) |
32 |
28 31
|
ax-mp |
⊢ ( 𝑂 ‘ ∅ ) = 0 |
33 |
27 32
|
pm3.2i |
⊢ ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) |
34 |
12
|
leidi |
⊢ 0 ≤ 0 |
35 |
34
|
a1i |
⊢ ( ( 𝑦 ∈ 𝒫 ∪ dom 𝑂 ∧ 𝑧 ∈ 𝒫 𝑦 ) → 0 ≤ 0 ) |
36 |
|
eqidd |
⊢ ( 𝑦 = 𝑧 → 0 = 0 ) |
37 |
|
elpwi |
⊢ ( 𝑧 ∈ 𝒫 𝑦 → 𝑧 ⊆ 𝑦 ) |
38 |
37
|
adantl |
⊢ ( ( 𝑦 ∈ 𝒫 ∪ dom 𝑂 ∧ 𝑧 ∈ 𝒫 𝑦 ) → 𝑧 ⊆ 𝑦 ) |
39 |
|
id |
⊢ ( 𝑦 ∈ 𝒫 ∪ dom 𝑂 → 𝑦 ∈ 𝒫 ∪ dom 𝑂 ) |
40 |
22 25
|
eqtr2i |
⊢ 𝒫 ∪ dom 𝑂 = 𝒫 𝑋 |
41 |
40
|
a1i |
⊢ ( 𝑦 ∈ 𝒫 ∪ dom 𝑂 → 𝒫 ∪ dom 𝑂 = 𝒫 𝑋 ) |
42 |
39 41
|
eleqtrd |
⊢ ( 𝑦 ∈ 𝒫 ∪ dom 𝑂 → 𝑦 ∈ 𝒫 𝑋 ) |
43 |
|
elpwi |
⊢ ( 𝑦 ∈ 𝒫 𝑋 → 𝑦 ⊆ 𝑋 ) |
44 |
42 43
|
syl |
⊢ ( 𝑦 ∈ 𝒫 ∪ dom 𝑂 → 𝑦 ⊆ 𝑋 ) |
45 |
44
|
adantr |
⊢ ( ( 𝑦 ∈ 𝒫 ∪ dom 𝑂 ∧ 𝑧 ∈ 𝒫 𝑦 ) → 𝑦 ⊆ 𝑋 ) |
46 |
38 45
|
sstrd |
⊢ ( ( 𝑦 ∈ 𝒫 ∪ dom 𝑂 ∧ 𝑧 ∈ 𝒫 𝑦 ) → 𝑧 ⊆ 𝑋 ) |
47 |
|
simpr |
⊢ ( ( 𝑦 ∈ 𝒫 ∪ dom 𝑂 ∧ 𝑧 ∈ 𝒫 𝑦 ) → 𝑧 ∈ 𝒫 𝑦 ) |
48 |
|
elpwg |
⊢ ( 𝑧 ∈ 𝒫 𝑦 → ( 𝑧 ∈ 𝒫 𝑋 ↔ 𝑧 ⊆ 𝑋 ) ) |
49 |
47 48
|
syl |
⊢ ( ( 𝑦 ∈ 𝒫 ∪ dom 𝑂 ∧ 𝑧 ∈ 𝒫 𝑦 ) → ( 𝑧 ∈ 𝒫 𝑋 ↔ 𝑧 ⊆ 𝑋 ) ) |
50 |
46 49
|
mpbird |
⊢ ( ( 𝑦 ∈ 𝒫 ∪ dom 𝑂 ∧ 𝑧 ∈ 𝒫 𝑦 ) → 𝑧 ∈ 𝒫 𝑋 ) |
51 |
12
|
a1i |
⊢ ( ( 𝑦 ∈ 𝒫 ∪ dom 𝑂 ∧ 𝑧 ∈ 𝒫 𝑦 ) → 0 ∈ ℝ ) |
52 |
9 36 50 51
|
fvmptd3 |
⊢ ( ( 𝑦 ∈ 𝒫 ∪ dom 𝑂 ∧ 𝑧 ∈ 𝒫 𝑦 ) → ( 𝑂 ‘ 𝑧 ) = 0 ) |
53 |
9
|
fvmpt2 |
⊢ ( ( 𝑦 ∈ 𝒫 𝑋 ∧ 0 ∈ ℝ ) → ( 𝑂 ‘ 𝑦 ) = 0 ) |
54 |
42 12 53
|
sylancl |
⊢ ( 𝑦 ∈ 𝒫 ∪ dom 𝑂 → ( 𝑂 ‘ 𝑦 ) = 0 ) |
55 |
54
|
adantr |
⊢ ( ( 𝑦 ∈ 𝒫 ∪ dom 𝑂 ∧ 𝑧 ∈ 𝒫 𝑦 ) → ( 𝑂 ‘ 𝑦 ) = 0 ) |
56 |
52 55
|
breq12d |
⊢ ( ( 𝑦 ∈ 𝒫 ∪ dom 𝑂 ∧ 𝑧 ∈ 𝒫 𝑦 ) → ( ( 𝑂 ‘ 𝑧 ) ≤ ( 𝑂 ‘ 𝑦 ) ↔ 0 ≤ 0 ) ) |
57 |
35 56
|
mpbird |
⊢ ( ( 𝑦 ∈ 𝒫 ∪ dom 𝑂 ∧ 𝑧 ∈ 𝒫 𝑦 ) → ( 𝑂 ‘ 𝑧 ) ≤ ( 𝑂 ‘ 𝑦 ) ) |
58 |
57
|
ralrimiva |
⊢ ( 𝑦 ∈ 𝒫 ∪ dom 𝑂 → ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑂 ‘ 𝑧 ) ≤ ( 𝑂 ‘ 𝑦 ) ) |
59 |
58
|
rgen |
⊢ ∀ 𝑦 ∈ 𝒫 ∪ dom 𝑂 ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑂 ‘ 𝑧 ) ≤ ( 𝑂 ‘ 𝑦 ) |
60 |
33 59
|
pm3.2i |
⊢ ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 ∪ dom 𝑂 ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑂 ‘ 𝑧 ) ≤ ( 𝑂 ‘ 𝑦 ) ) |
61 |
34
|
a1i |
⊢ ( 𝑦 ∈ 𝒫 dom 𝑂 → 0 ≤ 0 ) |
62 |
36
|
cbvmptv |
⊢ ( 𝑦 ∈ 𝒫 𝑋 ↦ 0 ) = ( 𝑧 ∈ 𝒫 𝑋 ↦ 0 ) |
63 |
9 62
|
eqtri |
⊢ 𝑂 = ( 𝑧 ∈ 𝒫 𝑋 ↦ 0 ) |
64 |
63
|
a1i |
⊢ ( 𝑦 ∈ 𝒫 dom 𝑂 → 𝑂 = ( 𝑧 ∈ 𝒫 𝑋 ↦ 0 ) ) |
65 |
|
eqidd |
⊢ ( ( 𝑦 ∈ 𝒫 dom 𝑂 ∧ 𝑧 = ∪ 𝑦 ) → 0 = 0 ) |
66 |
|
id |
⊢ ( 𝑦 ∈ 𝒫 dom 𝑂 → 𝑦 ∈ 𝒫 dom 𝑂 ) |
67 |
16
|
pweqi |
⊢ 𝒫 dom 𝑂 = 𝒫 𝒫 𝑋 |
68 |
67
|
a1i |
⊢ ( 𝑦 ∈ 𝒫 dom 𝑂 → 𝒫 dom 𝑂 = 𝒫 𝒫 𝑋 ) |
69 |
66 68
|
eleqtrd |
⊢ ( 𝑦 ∈ 𝒫 dom 𝑂 → 𝑦 ∈ 𝒫 𝒫 𝑋 ) |
70 |
|
elpwi |
⊢ ( 𝑦 ∈ 𝒫 𝒫 𝑋 → 𝑦 ⊆ 𝒫 𝑋 ) |
71 |
69 70
|
syl |
⊢ ( 𝑦 ∈ 𝒫 dom 𝑂 → 𝑦 ⊆ 𝒫 𝑋 ) |
72 |
|
sspwuni |
⊢ ( 𝑦 ⊆ 𝒫 𝑋 ↔ ∪ 𝑦 ⊆ 𝑋 ) |
73 |
71 72
|
sylib |
⊢ ( 𝑦 ∈ 𝒫 dom 𝑂 → ∪ 𝑦 ⊆ 𝑋 ) |
74 |
|
vuniex |
⊢ ∪ 𝑦 ∈ V |
75 |
74
|
a1i |
⊢ ( 𝑦 ∈ 𝒫 dom 𝑂 → ∪ 𝑦 ∈ V ) |
76 |
|
elpwg |
⊢ ( ∪ 𝑦 ∈ V → ( ∪ 𝑦 ∈ 𝒫 𝑋 ↔ ∪ 𝑦 ⊆ 𝑋 ) ) |
77 |
75 76
|
syl |
⊢ ( 𝑦 ∈ 𝒫 dom 𝑂 → ( ∪ 𝑦 ∈ 𝒫 𝑋 ↔ ∪ 𝑦 ⊆ 𝑋 ) ) |
78 |
73 77
|
mpbird |
⊢ ( 𝑦 ∈ 𝒫 dom 𝑂 → ∪ 𝑦 ∈ 𝒫 𝑋 ) |
79 |
12
|
a1i |
⊢ ( 𝑦 ∈ 𝒫 dom 𝑂 → 0 ∈ ℝ ) |
80 |
64 65 78 79
|
fvmptd |
⊢ ( 𝑦 ∈ 𝒫 dom 𝑂 → ( 𝑂 ‘ ∪ 𝑦 ) = 0 ) |
81 |
64
|
reseq1d |
⊢ ( 𝑦 ∈ 𝒫 dom 𝑂 → ( 𝑂 ↾ 𝑦 ) = ( ( 𝑧 ∈ 𝒫 𝑋 ↦ 0 ) ↾ 𝑦 ) ) |
82 |
|
resmpt |
⊢ ( 𝑦 ⊆ 𝒫 𝑋 → ( ( 𝑧 ∈ 𝒫 𝑋 ↦ 0 ) ↾ 𝑦 ) = ( 𝑧 ∈ 𝑦 ↦ 0 ) ) |
83 |
71 82
|
syl |
⊢ ( 𝑦 ∈ 𝒫 dom 𝑂 → ( ( 𝑧 ∈ 𝒫 𝑋 ↦ 0 ) ↾ 𝑦 ) = ( 𝑧 ∈ 𝑦 ↦ 0 ) ) |
84 |
81 83
|
eqtrd |
⊢ ( 𝑦 ∈ 𝒫 dom 𝑂 → ( 𝑂 ↾ 𝑦 ) = ( 𝑧 ∈ 𝑦 ↦ 0 ) ) |
85 |
84
|
fveq2d |
⊢ ( 𝑦 ∈ 𝒫 dom 𝑂 → ( Σ^ ‘ ( 𝑂 ↾ 𝑦 ) ) = ( Σ^ ‘ ( 𝑧 ∈ 𝑦 ↦ 0 ) ) ) |
86 |
|
nfv |
⊢ Ⅎ 𝑧 𝑦 ∈ 𝒫 dom 𝑂 |
87 |
86 66
|
sge0z |
⊢ ( 𝑦 ∈ 𝒫 dom 𝑂 → ( Σ^ ‘ ( 𝑧 ∈ 𝑦 ↦ 0 ) ) = 0 ) |
88 |
85 87
|
eqtrd |
⊢ ( 𝑦 ∈ 𝒫 dom 𝑂 → ( Σ^ ‘ ( 𝑂 ↾ 𝑦 ) ) = 0 ) |
89 |
80 88
|
breq12d |
⊢ ( 𝑦 ∈ 𝒫 dom 𝑂 → ( ( 𝑂 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑦 ) ) ↔ 0 ≤ 0 ) ) |
90 |
61 89
|
mpbird |
⊢ ( 𝑦 ∈ 𝒫 dom 𝑂 → ( 𝑂 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑦 ) ) ) |
91 |
90
|
a1d |
⊢ ( 𝑦 ∈ 𝒫 dom 𝑂 → ( 𝑦 ≼ ω → ( 𝑂 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑦 ) ) ) ) |
92 |
91
|
rgen |
⊢ ∀ 𝑦 ∈ 𝒫 dom 𝑂 ( 𝑦 ≼ ω → ( 𝑂 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑦 ) ) ) |
93 |
60 92
|
pm3.2i |
⊢ ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 ∪ dom 𝑂 ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑂 ‘ 𝑧 ) ≤ ( 𝑂 ‘ 𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂 ( 𝑦 ≼ ω → ( 𝑂 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑦 ) ) ) ) |
94 |
93
|
a1i |
⊢ ( 𝜑 → ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 ∪ dom 𝑂 ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑂 ‘ 𝑧 ) ≤ ( 𝑂 ‘ 𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂 ( 𝑦 ≼ ω → ( 𝑂 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑦 ) ) ) ) ) |
95 |
9
|
a1i |
⊢ ( 𝜑 → 𝑂 = ( 𝑦 ∈ 𝒫 𝑋 ↦ 0 ) ) |
96 |
1
|
pwexd |
⊢ ( 𝜑 → 𝒫 𝑋 ∈ V ) |
97 |
|
mptexg |
⊢ ( 𝒫 𝑋 ∈ V → ( 𝑦 ∈ 𝒫 𝑋 ↦ 0 ) ∈ V ) |
98 |
96 97
|
syl |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝒫 𝑋 ↦ 0 ) ∈ V ) |
99 |
95 98
|
eqeltrd |
⊢ ( 𝜑 → 𝑂 ∈ V ) |
100 |
|
isome |
⊢ ( 𝑂 ∈ V → ( 𝑂 ∈ OutMeas ↔ ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 ∪ dom 𝑂 ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑂 ‘ 𝑧 ) ≤ ( 𝑂 ‘ 𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂 ( 𝑦 ≼ ω → ( 𝑂 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑦 ) ) ) ) ) ) |
101 |
99 100
|
syl |
⊢ ( 𝜑 → ( 𝑂 ∈ OutMeas ↔ ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 ∪ dom 𝑂 ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑂 ‘ 𝑧 ) ≤ ( 𝑂 ‘ 𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂 ( 𝑦 ≼ ω → ( 𝑂 ‘ ∪ 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑦 ) ) ) ) ) ) |
102 |
94 101
|
mpbird |
⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) |