Metamath Proof Explorer


Theorem 0ome

Description: The map that assigns 0 to every subset, is an outer measure. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses 0ome.1 ( 𝜑𝑋𝑉 )
0ome.2 𝑂 = ( 𝑥 ∈ 𝒫 𝑋 ↦ 0 )
Assertion 0ome ( 𝜑𝑂 ∈ OutMeas )

Proof

Step Hyp Ref Expression
1 0ome.1 ( 𝜑𝑋𝑉 )
2 0ome.2 𝑂 = ( 𝑥 ∈ 𝒫 𝑋 ↦ 0 )
3 eqid ( 𝑦 ∈ 𝒫 𝑋 ↦ 0 ) = ( 𝑦 ∈ 𝒫 𝑋 ↦ 0 )
4 0e0iccpnf 0 ∈ ( 0 [,] +∞ )
5 4 a1i ( 𝑦 ∈ 𝒫 𝑋 → 0 ∈ ( 0 [,] +∞ ) )
6 3 5 fmpti ( 𝑦 ∈ 𝒫 𝑋 ↦ 0 ) : 𝒫 𝑋 ⟶ ( 0 [,] +∞ )
7 eqidd ( 𝑥 = 𝑦 → 0 = 0 )
8 7 cbvmptv ( 𝑥 ∈ 𝒫 𝑋 ↦ 0 ) = ( 𝑦 ∈ 𝒫 𝑋 ↦ 0 )
9 2 8 eqtri 𝑂 = ( 𝑦 ∈ 𝒫 𝑋 ↦ 0 )
10 9 feq1i ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ↔ ( 𝑦 ∈ 𝒫 𝑋 ↦ 0 ) : dom 𝑂 ⟶ ( 0 [,] +∞ ) )
11 9 dmeqi dom 𝑂 = dom ( 𝑦 ∈ 𝒫 𝑋 ↦ 0 )
12 0re 0 ∈ ℝ
13 12 rgenw 𝑦 ∈ 𝒫 𝑋 0 ∈ ℝ
14 dmmptg ( ∀ 𝑦 ∈ 𝒫 𝑋 0 ∈ ℝ → dom ( 𝑦 ∈ 𝒫 𝑋 ↦ 0 ) = 𝒫 𝑋 )
15 13 14 ax-mp dom ( 𝑦 ∈ 𝒫 𝑋 ↦ 0 ) = 𝒫 𝑋
16 11 15 eqtri dom 𝑂 = 𝒫 𝑋
17 16 feq2i ( ( 𝑦 ∈ 𝒫 𝑋 ↦ 0 ) : dom 𝑂 ⟶ ( 0 [,] +∞ ) ↔ ( 𝑦 ∈ 𝒫 𝑋 ↦ 0 ) : 𝒫 𝑋 ⟶ ( 0 [,] +∞ ) )
18 10 17 bitri ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ↔ ( 𝑦 ∈ 𝒫 𝑋 ↦ 0 ) : 𝒫 𝑋 ⟶ ( 0 [,] +∞ ) )
19 6 18 mpbir 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ )
20 unipw 𝒫 𝑋 = 𝑋
21 20 pweqi 𝒫 𝒫 𝑋 = 𝒫 𝑋
22 21 eqcomi 𝒫 𝑋 = 𝒫 𝒫 𝑋
23 16 eqcomi 𝒫 𝑋 = dom 𝑂
24 23 unieqi 𝒫 𝑋 = dom 𝑂
25 24 pweqi 𝒫 𝒫 𝑋 = 𝒫 dom 𝑂
26 16 22 25 3eqtri dom 𝑂 = 𝒫 dom 𝑂
27 19 26 pm3.2i ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 dom 𝑂 )
28 0elpw ∅ ∈ 𝒫 𝑋
29 eqidd ( 𝑦 = ∅ → 0 = 0 )
30 12 elexi 0 ∈ V
31 29 9 30 fvmpt ( ∅ ∈ 𝒫 𝑋 → ( 𝑂 ‘ ∅ ) = 0 )
32 28 31 ax-mp ( 𝑂 ‘ ∅ ) = 0
33 27 32 pm3.2i ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 )
34 12 leidi 0 ≤ 0
35 34 a1i ( ( 𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦 ) → 0 ≤ 0 )
36 eqidd ( 𝑦 = 𝑧 → 0 = 0 )
37 elpwi ( 𝑧 ∈ 𝒫 𝑦𝑧𝑦 )
38 37 adantl ( ( 𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦 ) → 𝑧𝑦 )
39 id ( 𝑦 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 dom 𝑂 )
40 22 25 eqtr2i 𝒫 dom 𝑂 = 𝒫 𝑋
41 40 a1i ( 𝑦 ∈ 𝒫 dom 𝑂 → 𝒫 dom 𝑂 = 𝒫 𝑋 )
42 39 41 eleqtrd ( 𝑦 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝑋 )
43 elpwi ( 𝑦 ∈ 𝒫 𝑋𝑦𝑋 )
44 42 43 syl ( 𝑦 ∈ 𝒫 dom 𝑂𝑦𝑋 )
45 44 adantr ( ( 𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦 ) → 𝑦𝑋 )
46 38 45 sstrd ( ( 𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦 ) → 𝑧𝑋 )
47 simpr ( ( 𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦 ) → 𝑧 ∈ 𝒫 𝑦 )
48 elpwg ( 𝑧 ∈ 𝒫 𝑦 → ( 𝑧 ∈ 𝒫 𝑋𝑧𝑋 ) )
49 47 48 syl ( ( 𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦 ) → ( 𝑧 ∈ 𝒫 𝑋𝑧𝑋 ) )
50 46 49 mpbird ( ( 𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦 ) → 𝑧 ∈ 𝒫 𝑋 )
51 12 a1i ( ( 𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦 ) → 0 ∈ ℝ )
52 9 36 50 51 fvmptd3 ( ( 𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦 ) → ( 𝑂𝑧 ) = 0 )
53 9 fvmpt2 ( ( 𝑦 ∈ 𝒫 𝑋 ∧ 0 ∈ ℝ ) → ( 𝑂𝑦 ) = 0 )
54 42 12 53 sylancl ( 𝑦 ∈ 𝒫 dom 𝑂 → ( 𝑂𝑦 ) = 0 )
55 54 adantr ( ( 𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦 ) → ( 𝑂𝑦 ) = 0 )
56 52 55 breq12d ( ( 𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦 ) → ( ( 𝑂𝑧 ) ≤ ( 𝑂𝑦 ) ↔ 0 ≤ 0 ) )
57 35 56 mpbird ( ( 𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦 ) → ( 𝑂𝑧 ) ≤ ( 𝑂𝑦 ) )
58 57 ralrimiva ( 𝑦 ∈ 𝒫 dom 𝑂 → ∀ 𝑧 ∈ 𝒫 𝑦 ( 𝑂𝑧 ) ≤ ( 𝑂𝑦 ) )
59 58 rgen 𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦 ( 𝑂𝑧 ) ≤ ( 𝑂𝑦 )
60 33 59 pm3.2i ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦 ( 𝑂𝑧 ) ≤ ( 𝑂𝑦 ) )
61 34 a1i ( 𝑦 ∈ 𝒫 dom 𝑂 → 0 ≤ 0 )
62 36 cbvmptv ( 𝑦 ∈ 𝒫 𝑋 ↦ 0 ) = ( 𝑧 ∈ 𝒫 𝑋 ↦ 0 )
63 9 62 eqtri 𝑂 = ( 𝑧 ∈ 𝒫 𝑋 ↦ 0 )
64 63 a1i ( 𝑦 ∈ 𝒫 dom 𝑂𝑂 = ( 𝑧 ∈ 𝒫 𝑋 ↦ 0 ) )
65 eqidd ( ( 𝑦 ∈ 𝒫 dom 𝑂𝑧 = 𝑦 ) → 0 = 0 )
66 id ( 𝑦 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 dom 𝑂 )
67 16 pweqi 𝒫 dom 𝑂 = 𝒫 𝒫 𝑋
68 67 a1i ( 𝑦 ∈ 𝒫 dom 𝑂 → 𝒫 dom 𝑂 = 𝒫 𝒫 𝑋 )
69 66 68 eleqtrd ( 𝑦 ∈ 𝒫 dom 𝑂𝑦 ∈ 𝒫 𝒫 𝑋 )
70 elpwi ( 𝑦 ∈ 𝒫 𝒫 𝑋𝑦 ⊆ 𝒫 𝑋 )
71 69 70 syl ( 𝑦 ∈ 𝒫 dom 𝑂𝑦 ⊆ 𝒫 𝑋 )
72 sspwuni ( 𝑦 ⊆ 𝒫 𝑋 𝑦𝑋 )
73 71 72 sylib ( 𝑦 ∈ 𝒫 dom 𝑂 𝑦𝑋 )
74 vuniex 𝑦 ∈ V
75 74 a1i ( 𝑦 ∈ 𝒫 dom 𝑂 𝑦 ∈ V )
76 elpwg ( 𝑦 ∈ V → ( 𝑦 ∈ 𝒫 𝑋 𝑦𝑋 ) )
77 75 76 syl ( 𝑦 ∈ 𝒫 dom 𝑂 → ( 𝑦 ∈ 𝒫 𝑋 𝑦𝑋 ) )
78 73 77 mpbird ( 𝑦 ∈ 𝒫 dom 𝑂 𝑦 ∈ 𝒫 𝑋 )
79 12 a1i ( 𝑦 ∈ 𝒫 dom 𝑂 → 0 ∈ ℝ )
80 64 65 78 79 fvmptd ( 𝑦 ∈ 𝒫 dom 𝑂 → ( 𝑂 𝑦 ) = 0 )
81 64 reseq1d ( 𝑦 ∈ 𝒫 dom 𝑂 → ( 𝑂𝑦 ) = ( ( 𝑧 ∈ 𝒫 𝑋 ↦ 0 ) ↾ 𝑦 ) )
82 resmpt ( 𝑦 ⊆ 𝒫 𝑋 → ( ( 𝑧 ∈ 𝒫 𝑋 ↦ 0 ) ↾ 𝑦 ) = ( 𝑧𝑦 ↦ 0 ) )
83 71 82 syl ( 𝑦 ∈ 𝒫 dom 𝑂 → ( ( 𝑧 ∈ 𝒫 𝑋 ↦ 0 ) ↾ 𝑦 ) = ( 𝑧𝑦 ↦ 0 ) )
84 81 83 eqtrd ( 𝑦 ∈ 𝒫 dom 𝑂 → ( 𝑂𝑦 ) = ( 𝑧𝑦 ↦ 0 ) )
85 84 fveq2d ( 𝑦 ∈ 𝒫 dom 𝑂 → ( Σ^ ‘ ( 𝑂𝑦 ) ) = ( Σ^ ‘ ( 𝑧𝑦 ↦ 0 ) ) )
86 nfv 𝑧 𝑦 ∈ 𝒫 dom 𝑂
87 86 66 sge0z ( 𝑦 ∈ 𝒫 dom 𝑂 → ( Σ^ ‘ ( 𝑧𝑦 ↦ 0 ) ) = 0 )
88 85 87 eqtrd ( 𝑦 ∈ 𝒫 dom 𝑂 → ( Σ^ ‘ ( 𝑂𝑦 ) ) = 0 )
89 80 88 breq12d ( 𝑦 ∈ 𝒫 dom 𝑂 → ( ( 𝑂 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂𝑦 ) ) ↔ 0 ≤ 0 ) )
90 61 89 mpbird ( 𝑦 ∈ 𝒫 dom 𝑂 → ( 𝑂 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂𝑦 ) ) )
91 90 a1d ( 𝑦 ∈ 𝒫 dom 𝑂 → ( 𝑦 ≼ ω → ( 𝑂 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂𝑦 ) ) ) )
92 91 rgen 𝑦 ∈ 𝒫 dom 𝑂 ( 𝑦 ≼ ω → ( 𝑂 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂𝑦 ) ) )
93 60 92 pm3.2i ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦 ( 𝑂𝑧 ) ≤ ( 𝑂𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂 ( 𝑦 ≼ ω → ( 𝑂 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂𝑦 ) ) ) )
94 93 a1i ( 𝜑 → ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦 ( 𝑂𝑧 ) ≤ ( 𝑂𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂 ( 𝑦 ≼ ω → ( 𝑂 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂𝑦 ) ) ) ) )
95 9 a1i ( 𝜑𝑂 = ( 𝑦 ∈ 𝒫 𝑋 ↦ 0 ) )
96 1 pwexd ( 𝜑 → 𝒫 𝑋 ∈ V )
97 mptexg ( 𝒫 𝑋 ∈ V → ( 𝑦 ∈ 𝒫 𝑋 ↦ 0 ) ∈ V )
98 96 97 syl ( 𝜑 → ( 𝑦 ∈ 𝒫 𝑋 ↦ 0 ) ∈ V )
99 95 98 eqeltrd ( 𝜑𝑂 ∈ V )
100 isome ( 𝑂 ∈ V → ( 𝑂 ∈ OutMeas ↔ ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦 ( 𝑂𝑧 ) ≤ ( 𝑂𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂 ( 𝑦 ≼ ω → ( 𝑂 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂𝑦 ) ) ) ) ) )
101 99 100 syl ( 𝜑 → ( 𝑂 ∈ OutMeas ↔ ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂𝑧 ∈ 𝒫 𝑦 ( 𝑂𝑧 ) ≤ ( 𝑂𝑦 ) ) ∧ ∀ 𝑦 ∈ 𝒫 dom 𝑂 ( 𝑦 ≼ ω → ( 𝑂 𝑦 ) ≤ ( Σ^ ‘ ( 𝑂𝑦 ) ) ) ) ) )
102 94 101 mpbird ( 𝜑𝑂 ∈ OutMeas )