Step |
Hyp |
Ref |
Expression |
1 |
|
isomenndlem.o |
⊢ ( 𝜑 → 𝑂 : 𝒫 𝑋 ⟶ ( 0 [,] +∞ ) ) |
2 |
|
isomenndlem.o0 |
⊢ ( 𝜑 → ( 𝑂 ‘ ∅ ) = 0 ) |
3 |
|
isomenndlem.y |
⊢ ( 𝜑 → 𝑌 ⊆ 𝒫 𝑋 ) |
4 |
|
isomenndlem.subadd |
⊢ ( ( 𝜑 ∧ 𝑎 : ℕ ⟶ 𝒫 𝑋 ) → ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝑎 ‘ 𝑛 ) ) ≤ ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝑎 ‘ 𝑛 ) ) ) ) ) |
5 |
|
isomenndlem.b |
⊢ ( 𝜑 → 𝐵 ⊆ ℕ ) |
6 |
|
isomenndlem.f |
⊢ ( 𝜑 → 𝐹 : 𝐵 –1-1-onto→ 𝑌 ) |
7 |
|
isomenndlem.a |
⊢ 𝐴 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) ) |
8 |
|
id |
⊢ ( 𝜑 → 𝜑 ) |
9 |
|
iftrue |
⊢ ( 𝑛 ∈ 𝐵 → if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) = ( 𝐹 ‘ 𝑛 ) ) |
10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐵 ) → if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) = ( 𝐹 ‘ 𝑛 ) ) |
11 |
|
f1of |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝑌 → 𝐹 : 𝐵 ⟶ 𝑌 ) |
12 |
6 11
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ 𝑌 ) |
13 |
|
ssun1 |
⊢ 𝑌 ⊆ ( 𝑌 ∪ { ∅ } ) |
14 |
13
|
a1i |
⊢ ( 𝜑 → 𝑌 ⊆ ( 𝑌 ∪ { ∅ } ) ) |
15 |
12 14
|
fssd |
⊢ ( 𝜑 → 𝐹 : 𝐵 ⟶ ( 𝑌 ∪ { ∅ } ) ) |
16 |
15
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑛 ) ∈ ( 𝑌 ∪ { ∅ } ) ) |
17 |
10 16
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐵 ) → if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) ∈ ( 𝑌 ∪ { ∅ } ) ) |
18 |
17
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑛 ∈ 𝐵 ) → if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) ∈ ( 𝑌 ∪ { ∅ } ) ) |
19 |
|
iffalse |
⊢ ( ¬ 𝑛 ∈ 𝐵 → if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) = ∅ ) |
20 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝑛 ∈ 𝐵 ) → if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) = ∅ ) |
21 |
|
0ex |
⊢ ∅ ∈ V |
22 |
21
|
snid |
⊢ ∅ ∈ { ∅ } |
23 |
|
elun2 |
⊢ ( ∅ ∈ { ∅ } → ∅ ∈ ( 𝑌 ∪ { ∅ } ) ) |
24 |
22 23
|
ax-mp |
⊢ ∅ ∈ ( 𝑌 ∪ { ∅ } ) |
25 |
24
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝑛 ∈ 𝐵 ) → ∅ ∈ ( 𝑌 ∪ { ∅ } ) ) |
26 |
20 25
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ¬ 𝑛 ∈ 𝐵 ) → if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) ∈ ( 𝑌 ∪ { ∅ } ) ) |
27 |
26
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑛 ∈ 𝐵 ) → if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) ∈ ( 𝑌 ∪ { ∅ } ) ) |
28 |
18 27
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) ∈ ( 𝑌 ∪ { ∅ } ) ) |
29 |
28 7
|
fmptd |
⊢ ( 𝜑 → 𝐴 : ℕ ⟶ ( 𝑌 ∪ { ∅ } ) ) |
30 |
|
0elpw |
⊢ ∅ ∈ 𝒫 𝑋 |
31 |
|
snssi |
⊢ ( ∅ ∈ 𝒫 𝑋 → { ∅ } ⊆ 𝒫 𝑋 ) |
32 |
30 31
|
ax-mp |
⊢ { ∅ } ⊆ 𝒫 𝑋 |
33 |
32
|
a1i |
⊢ ( 𝜑 → { ∅ } ⊆ 𝒫 𝑋 ) |
34 |
3 33
|
unssd |
⊢ ( 𝜑 → ( 𝑌 ∪ { ∅ } ) ⊆ 𝒫 𝑋 ) |
35 |
29 34
|
fssd |
⊢ ( 𝜑 → 𝐴 : ℕ ⟶ 𝒫 𝑋 ) |
36 |
|
nnex |
⊢ ℕ ∈ V |
37 |
36
|
mptex |
⊢ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) ) ∈ V |
38 |
7 37
|
eqeltri |
⊢ 𝐴 ∈ V |
39 |
|
feq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 : ℕ ⟶ 𝒫 𝑋 ↔ 𝐴 : ℕ ⟶ 𝒫 𝑋 ) ) |
40 |
39
|
anbi2d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝜑 ∧ 𝑎 : ℕ ⟶ 𝒫 𝑋 ) ↔ ( 𝜑 ∧ 𝐴 : ℕ ⟶ 𝒫 𝑋 ) ) ) |
41 |
|
fveq1 |
⊢ ( 𝑎 = 𝐴 → ( 𝑎 ‘ 𝑛 ) = ( 𝐴 ‘ 𝑛 ) ) |
42 |
41
|
iuneq2d |
⊢ ( 𝑎 = 𝐴 → ∪ 𝑛 ∈ ℕ ( 𝑎 ‘ 𝑛 ) = ∪ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) ) |
43 |
42
|
fveq2d |
⊢ ( 𝑎 = 𝐴 → ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝑎 ‘ 𝑛 ) ) = ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) ) ) |
44 |
|
simpl |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑛 ∈ ℕ ) → 𝑎 = 𝐴 ) |
45 |
44
|
fveq1d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑛 ∈ ℕ ) → ( 𝑎 ‘ 𝑛 ) = ( 𝐴 ‘ 𝑛 ) ) |
46 |
45
|
fveq2d |
⊢ ( ( 𝑎 = 𝐴 ∧ 𝑛 ∈ ℕ ) → ( 𝑂 ‘ ( 𝑎 ‘ 𝑛 ) ) = ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) |
47 |
46
|
mpteq2dva |
⊢ ( 𝑎 = 𝐴 → ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝑎 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) |
48 |
47
|
fveq2d |
⊢ ( 𝑎 = 𝐴 → ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝑎 ‘ 𝑛 ) ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) ) |
49 |
43 48
|
breq12d |
⊢ ( 𝑎 = 𝐴 → ( ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝑎 ‘ 𝑛 ) ) ≤ ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝑎 ‘ 𝑛 ) ) ) ) ↔ ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) ) ≤ ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) ) ) |
50 |
40 49
|
imbi12d |
⊢ ( 𝑎 = 𝐴 → ( ( ( 𝜑 ∧ 𝑎 : ℕ ⟶ 𝒫 𝑋 ) → ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝑎 ‘ 𝑛 ) ) ≤ ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝑎 ‘ 𝑛 ) ) ) ) ) ↔ ( ( 𝜑 ∧ 𝐴 : ℕ ⟶ 𝒫 𝑋 ) → ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) ) ≤ ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) ) ) ) |
51 |
38 50 4
|
vtocl |
⊢ ( ( 𝜑 ∧ 𝐴 : ℕ ⟶ 𝒫 𝑋 ) → ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) ) ≤ ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) ) |
52 |
8 35 51
|
syl2anc |
⊢ ( 𝜑 → ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) ) ≤ ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) ) |
53 |
12
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝐵 = ℕ ) ∧ 𝑛 ∈ ℕ ) → 𝐹 : 𝐵 ⟶ 𝑌 ) |
54 |
|
simpr |
⊢ ( ( 𝐵 = ℕ ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ ℕ ) |
55 |
|
id |
⊢ ( 𝐵 = ℕ → 𝐵 = ℕ ) |
56 |
55
|
eqcomd |
⊢ ( 𝐵 = ℕ → ℕ = 𝐵 ) |
57 |
56
|
adantr |
⊢ ( ( 𝐵 = ℕ ∧ 𝑛 ∈ ℕ ) → ℕ = 𝐵 ) |
58 |
54 57
|
eleqtrd |
⊢ ( ( 𝐵 = ℕ ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ 𝐵 ) |
59 |
58
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝐵 = ℕ ) ∧ 𝑛 ∈ ℕ ) → 𝑛 ∈ 𝐵 ) |
60 |
53 59
|
ffvelrnd |
⊢ ( ( ( 𝜑 ∧ 𝐵 = ℕ ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ 𝑌 ) |
61 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ ( 𝐹 ‘ 𝑛 ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝐹 ‘ 𝑛 ) ) |
62 |
60 61
|
fmptd |
⊢ ( ( 𝜑 ∧ 𝐵 = ℕ ) → ( 𝑛 ∈ ℕ ↦ ( 𝐹 ‘ 𝑛 ) ) : ℕ ⟶ 𝑌 ) |
63 |
7
|
a1i |
⊢ ( 𝐵 = ℕ → 𝐴 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) ) ) |
64 |
58
|
iftrued |
⊢ ( ( 𝐵 = ℕ ∧ 𝑛 ∈ ℕ ) → if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) = ( 𝐹 ‘ 𝑛 ) ) |
65 |
64
|
mpteq2dva |
⊢ ( 𝐵 = ℕ → ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) ) = ( 𝑛 ∈ ℕ ↦ ( 𝐹 ‘ 𝑛 ) ) ) |
66 |
63 65
|
eqtrd |
⊢ ( 𝐵 = ℕ → 𝐴 = ( 𝑛 ∈ ℕ ↦ ( 𝐹 ‘ 𝑛 ) ) ) |
67 |
66
|
feq1d |
⊢ ( 𝐵 = ℕ → ( 𝐴 : ℕ ⟶ 𝑌 ↔ ( 𝑛 ∈ ℕ ↦ ( 𝐹 ‘ 𝑛 ) ) : ℕ ⟶ 𝑌 ) ) |
68 |
67
|
adantl |
⊢ ( ( 𝜑 ∧ 𝐵 = ℕ ) → ( 𝐴 : ℕ ⟶ 𝑌 ↔ ( 𝑛 ∈ ℕ ↦ ( 𝐹 ‘ 𝑛 ) ) : ℕ ⟶ 𝑌 ) ) |
69 |
62 68
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝐵 = ℕ ) → 𝐴 : ℕ ⟶ 𝑌 ) |
70 |
|
f1ofo |
⊢ ( 𝐹 : 𝐵 –1-1-onto→ 𝑌 → 𝐹 : 𝐵 –onto→ 𝑌 ) |
71 |
6 70
|
syl |
⊢ ( 𝜑 → 𝐹 : 𝐵 –onto→ 𝑌 ) |
72 |
|
dffo3 |
⊢ ( 𝐹 : 𝐵 –onto→ 𝑌 ↔ ( 𝐹 : 𝐵 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝑌 ∃ 𝑛 ∈ 𝐵 𝑦 = ( 𝐹 ‘ 𝑛 ) ) ) |
73 |
71 72
|
sylib |
⊢ ( 𝜑 → ( 𝐹 : 𝐵 ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝑌 ∃ 𝑛 ∈ 𝐵 𝑦 = ( 𝐹 ‘ 𝑛 ) ) ) |
74 |
73
|
simprd |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑌 ∃ 𝑛 ∈ 𝐵 𝑦 = ( 𝐹 ‘ 𝑛 ) ) |
75 |
74
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ∀ 𝑦 ∈ 𝑌 ∃ 𝑛 ∈ 𝐵 𝑦 = ( 𝐹 ‘ 𝑛 ) ) |
76 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ 𝑌 ) |
77 |
|
rspa |
⊢ ( ( ∀ 𝑦 ∈ 𝑌 ∃ 𝑛 ∈ 𝐵 𝑦 = ( 𝐹 ‘ 𝑛 ) ∧ 𝑦 ∈ 𝑌 ) → ∃ 𝑛 ∈ 𝐵 𝑦 = ( 𝐹 ‘ 𝑛 ) ) |
78 |
75 76 77
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ∃ 𝑛 ∈ 𝐵 𝑦 = ( 𝐹 ‘ 𝑛 ) ) |
79 |
78
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝐵 = ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ∃ 𝑛 ∈ 𝐵 𝑦 = ( 𝐹 ‘ 𝑛 ) ) |
80 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝐵 = ℕ ) |
81 |
|
nfre1 |
⊢ Ⅎ 𝑛 ∃ 𝑛 ∈ ℕ 𝑦 = ( 𝐴 ‘ 𝑛 ) |
82 |
|
simpr |
⊢ ( ( 𝐵 = ℕ ∧ 𝑛 ∈ 𝐵 ) → 𝑛 ∈ 𝐵 ) |
83 |
|
simpl |
⊢ ( ( 𝐵 = ℕ ∧ 𝑛 ∈ 𝐵 ) → 𝐵 = ℕ ) |
84 |
82 83
|
eleqtrd |
⊢ ( ( 𝐵 = ℕ ∧ 𝑛 ∈ 𝐵 ) → 𝑛 ∈ ℕ ) |
85 |
84
|
adantll |
⊢ ( ( ( 𝜑 ∧ 𝐵 = ℕ ) ∧ 𝑛 ∈ 𝐵 ) → 𝑛 ∈ ℕ ) |
86 |
85
|
3adant3 |
⊢ ( ( ( 𝜑 ∧ 𝐵 = ℕ ) ∧ 𝑛 ∈ 𝐵 ∧ 𝑦 = ( 𝐹 ‘ 𝑛 ) ) → 𝑛 ∈ ℕ ) |
87 |
63
|
fveq1d |
⊢ ( 𝐵 = ℕ → ( 𝐴 ‘ 𝑛 ) = ( ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) ) ‘ 𝑛 ) ) |
88 |
87
|
3ad2ant1 |
⊢ ( ( 𝐵 = ℕ ∧ 𝑛 ∈ 𝐵 ∧ 𝑦 = ( 𝐹 ‘ 𝑛 ) ) → ( 𝐴 ‘ 𝑛 ) = ( ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) ) ‘ 𝑛 ) ) |
89 |
|
fvex |
⊢ ( 𝐹 ‘ 𝑛 ) ∈ V |
90 |
89 21
|
ifex |
⊢ if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) ∈ V |
91 |
90
|
a1i |
⊢ ( ( 𝐵 = ℕ ∧ 𝑛 ∈ 𝐵 ) → if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) ∈ V ) |
92 |
|
eqid |
⊢ ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) ) |
93 |
92
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) ∈ V ) → ( ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) ) ‘ 𝑛 ) = if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) ) |
94 |
84 91 93
|
syl2anc |
⊢ ( ( 𝐵 = ℕ ∧ 𝑛 ∈ 𝐵 ) → ( ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) ) ‘ 𝑛 ) = if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) ) |
95 |
9
|
adantl |
⊢ ( ( 𝐵 = ℕ ∧ 𝑛 ∈ 𝐵 ) → if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) = ( 𝐹 ‘ 𝑛 ) ) |
96 |
94 95
|
eqtrd |
⊢ ( ( 𝐵 = ℕ ∧ 𝑛 ∈ 𝐵 ) → ( ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) ) ‘ 𝑛 ) = ( 𝐹 ‘ 𝑛 ) ) |
97 |
96
|
3adant3 |
⊢ ( ( 𝐵 = ℕ ∧ 𝑛 ∈ 𝐵 ∧ 𝑦 = ( 𝐹 ‘ 𝑛 ) ) → ( ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) ) ‘ 𝑛 ) = ( 𝐹 ‘ 𝑛 ) ) |
98 |
|
id |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑛 ) → 𝑦 = ( 𝐹 ‘ 𝑛 ) ) |
99 |
98
|
eqcomd |
⊢ ( 𝑦 = ( 𝐹 ‘ 𝑛 ) → ( 𝐹 ‘ 𝑛 ) = 𝑦 ) |
100 |
99
|
3ad2ant3 |
⊢ ( ( 𝐵 = ℕ ∧ 𝑛 ∈ 𝐵 ∧ 𝑦 = ( 𝐹 ‘ 𝑛 ) ) → ( 𝐹 ‘ 𝑛 ) = 𝑦 ) |
101 |
88 97 100
|
3eqtrrd |
⊢ ( ( 𝐵 = ℕ ∧ 𝑛 ∈ 𝐵 ∧ 𝑦 = ( 𝐹 ‘ 𝑛 ) ) → 𝑦 = ( 𝐴 ‘ 𝑛 ) ) |
102 |
101
|
3adant1l |
⊢ ( ( ( 𝜑 ∧ 𝐵 = ℕ ) ∧ 𝑛 ∈ 𝐵 ∧ 𝑦 = ( 𝐹 ‘ 𝑛 ) ) → 𝑦 = ( 𝐴 ‘ 𝑛 ) ) |
103 |
|
rspe |
⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑦 = ( 𝐴 ‘ 𝑛 ) ) → ∃ 𝑛 ∈ ℕ 𝑦 = ( 𝐴 ‘ 𝑛 ) ) |
104 |
86 102 103
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝐵 = ℕ ) ∧ 𝑛 ∈ 𝐵 ∧ 𝑦 = ( 𝐹 ‘ 𝑛 ) ) → ∃ 𝑛 ∈ ℕ 𝑦 = ( 𝐴 ‘ 𝑛 ) ) |
105 |
104
|
3exp |
⊢ ( ( 𝜑 ∧ 𝐵 = ℕ ) → ( 𝑛 ∈ 𝐵 → ( 𝑦 = ( 𝐹 ‘ 𝑛 ) → ∃ 𝑛 ∈ ℕ 𝑦 = ( 𝐴 ‘ 𝑛 ) ) ) ) |
106 |
80 81 105
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝐵 = ℕ ) → ( ∃ 𝑛 ∈ 𝐵 𝑦 = ( 𝐹 ‘ 𝑛 ) → ∃ 𝑛 ∈ ℕ 𝑦 = ( 𝐴 ‘ 𝑛 ) ) ) |
107 |
106
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝐵 = ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ( ∃ 𝑛 ∈ 𝐵 𝑦 = ( 𝐹 ‘ 𝑛 ) → ∃ 𝑛 ∈ ℕ 𝑦 = ( 𝐴 ‘ 𝑛 ) ) ) |
108 |
79 107
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝐵 = ℕ ) ∧ 𝑦 ∈ 𝑌 ) → ∃ 𝑛 ∈ ℕ 𝑦 = ( 𝐴 ‘ 𝑛 ) ) |
109 |
108
|
ralrimiva |
⊢ ( ( 𝜑 ∧ 𝐵 = ℕ ) → ∀ 𝑦 ∈ 𝑌 ∃ 𝑛 ∈ ℕ 𝑦 = ( 𝐴 ‘ 𝑛 ) ) |
110 |
69 109
|
jca |
⊢ ( ( 𝜑 ∧ 𝐵 = ℕ ) → ( 𝐴 : ℕ ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝑌 ∃ 𝑛 ∈ ℕ 𝑦 = ( 𝐴 ‘ 𝑛 ) ) ) |
111 |
|
dffo3 |
⊢ ( 𝐴 : ℕ –onto→ 𝑌 ↔ ( 𝐴 : ℕ ⟶ 𝑌 ∧ ∀ 𝑦 ∈ 𝑌 ∃ 𝑛 ∈ ℕ 𝑦 = ( 𝐴 ‘ 𝑛 ) ) ) |
112 |
110 111
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝐵 = ℕ ) → 𝐴 : ℕ –onto→ 𝑌 ) |
113 |
|
founiiun |
⊢ ( 𝐴 : ℕ –onto→ 𝑌 → ∪ 𝑌 = ∪ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) ) |
114 |
112 113
|
syl |
⊢ ( ( 𝜑 ∧ 𝐵 = ℕ ) → ∪ 𝑌 = ∪ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) ) |
115 |
|
uniun |
⊢ ∪ ( 𝑌 ∪ { ∅ } ) = ( ∪ 𝑌 ∪ ∪ { ∅ } ) |
116 |
21
|
unisn |
⊢ ∪ { ∅ } = ∅ |
117 |
116
|
uneq2i |
⊢ ( ∪ 𝑌 ∪ ∪ { ∅ } ) = ( ∪ 𝑌 ∪ ∅ ) |
118 |
|
un0 |
⊢ ( ∪ 𝑌 ∪ ∅ ) = ∪ 𝑌 |
119 |
115 117 118
|
3eqtrri |
⊢ ∪ 𝑌 = ∪ ( 𝑌 ∪ { ∅ } ) |
120 |
119
|
a1i |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 = ℕ ) → ∪ 𝑌 = ∪ ( 𝑌 ∪ { ∅ } ) ) |
121 |
29
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 = ℕ ) → 𝐴 : ℕ ⟶ ( 𝑌 ∪ { ∅ } ) ) |
122 |
|
nfv |
⊢ Ⅎ 𝑛 ( ( 𝜑 ∧ ¬ 𝐵 = ℕ ) ∧ 𝑦 = ∅ ) |
123 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 = ℕ ) → 𝐵 ⊆ ℕ ) |
124 |
55
|
necon3bi |
⊢ ( ¬ 𝐵 = ℕ → 𝐵 ≠ ℕ ) |
125 |
124
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 = ℕ ) → 𝐵 ≠ ℕ ) |
126 |
123 125
|
jca |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 = ℕ ) → ( 𝐵 ⊆ ℕ ∧ 𝐵 ≠ ℕ ) ) |
127 |
|
df-pss |
⊢ ( 𝐵 ⊊ ℕ ↔ ( 𝐵 ⊆ ℕ ∧ 𝐵 ≠ ℕ ) ) |
128 |
126 127
|
sylibr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 = ℕ ) → 𝐵 ⊊ ℕ ) |
129 |
|
pssnel |
⊢ ( 𝐵 ⊊ ℕ → ∃ 𝑛 ( 𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ 𝐵 ) ) |
130 |
128 129
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 = ℕ ) → ∃ 𝑛 ( 𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ 𝐵 ) ) |
131 |
130
|
adantr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐵 = ℕ ) ∧ 𝑦 = ∅ ) → ∃ 𝑛 ( 𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ 𝐵 ) ) |
132 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑦 = ∅ ) ∧ ( 𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ 𝐵 ) ) → 𝑛 ∈ ℕ ) |
133 |
|
simprl |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ 𝐵 ) ) → 𝑛 ∈ ℕ ) |
134 |
90
|
a1i |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ 𝐵 ) ) → if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) ∈ V ) |
135 |
7
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) ∈ V ) → ( 𝐴 ‘ 𝑛 ) = if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) ) |
136 |
133 134 135
|
syl2anc |
⊢ ( ( 𝜑 ∧ ( 𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ 𝐵 ) ) → ( 𝐴 ‘ 𝑛 ) = if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) ) |
137 |
136
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 = ∅ ) ∧ ( 𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ 𝐵 ) ) → ( 𝐴 ‘ 𝑛 ) = if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) ) |
138 |
19
|
ad2antll |
⊢ ( ( ( 𝜑 ∧ 𝑦 = ∅ ) ∧ ( 𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ 𝐵 ) ) → if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) = ∅ ) |
139 |
|
id |
⊢ ( 𝑦 = ∅ → 𝑦 = ∅ ) |
140 |
139
|
eqcomd |
⊢ ( 𝑦 = ∅ → ∅ = 𝑦 ) |
141 |
140
|
ad2antlr |
⊢ ( ( ( 𝜑 ∧ 𝑦 = ∅ ) ∧ ( 𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ 𝐵 ) ) → ∅ = 𝑦 ) |
142 |
137 138 141
|
3eqtrrd |
⊢ ( ( ( 𝜑 ∧ 𝑦 = ∅ ) ∧ ( 𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ 𝐵 ) ) → 𝑦 = ( 𝐴 ‘ 𝑛 ) ) |
143 |
132 142 103
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑦 = ∅ ) ∧ ( 𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ 𝐵 ) ) → ∃ 𝑛 ∈ ℕ 𝑦 = ( 𝐴 ‘ 𝑛 ) ) |
144 |
143
|
ex |
⊢ ( ( 𝜑 ∧ 𝑦 = ∅ ) → ( ( 𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ 𝐵 ) → ∃ 𝑛 ∈ ℕ 𝑦 = ( 𝐴 ‘ 𝑛 ) ) ) |
145 |
144
|
adantlr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐵 = ℕ ) ∧ 𝑦 = ∅ ) → ( ( 𝑛 ∈ ℕ ∧ ¬ 𝑛 ∈ 𝐵 ) → ∃ 𝑛 ∈ ℕ 𝑦 = ( 𝐴 ‘ 𝑛 ) ) ) |
146 |
122 81 131 145
|
exlimimdd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐵 = ℕ ) ∧ 𝑦 = ∅ ) → ∃ 𝑛 ∈ ℕ 𝑦 = ( 𝐴 ‘ 𝑛 ) ) |
147 |
146
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐵 = ℕ ) ∧ 𝑦 ∈ ( 𝑌 ∪ { ∅ } ) ) ∧ 𝑦 = ∅ ) → ∃ 𝑛 ∈ ℕ 𝑦 = ( 𝐴 ‘ 𝑛 ) ) |
148 |
|
simplll |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐵 = ℕ ) ∧ 𝑦 ∈ ( 𝑌 ∪ { ∅ } ) ) ∧ ¬ 𝑦 = ∅ ) → 𝜑 ) |
149 |
|
simpl |
⊢ ( ( 𝑦 ∈ ( 𝑌 ∪ { ∅ } ) ∧ ¬ 𝑦 = ∅ ) → 𝑦 ∈ ( 𝑌 ∪ { ∅ } ) ) |
150 |
|
elsni |
⊢ ( 𝑦 ∈ { ∅ } → 𝑦 = ∅ ) |
151 |
150
|
con3i |
⊢ ( ¬ 𝑦 = ∅ → ¬ 𝑦 ∈ { ∅ } ) |
152 |
151
|
adantl |
⊢ ( ( 𝑦 ∈ ( 𝑌 ∪ { ∅ } ) ∧ ¬ 𝑦 = ∅ ) → ¬ 𝑦 ∈ { ∅ } ) |
153 |
|
elunnel2 |
⊢ ( ( 𝑦 ∈ ( 𝑌 ∪ { ∅ } ) ∧ ¬ 𝑦 ∈ { ∅ } ) → 𝑦 ∈ 𝑌 ) |
154 |
149 152 153
|
syl2anc |
⊢ ( ( 𝑦 ∈ ( 𝑌 ∪ { ∅ } ) ∧ ¬ 𝑦 = ∅ ) → 𝑦 ∈ 𝑌 ) |
155 |
154
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐵 = ℕ ) ∧ 𝑦 ∈ ( 𝑌 ∪ { ∅ } ) ) ∧ ¬ 𝑦 = ∅ ) → 𝑦 ∈ 𝑌 ) |
156 |
71
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝐹 : 𝐵 –onto→ 𝑌 ) |
157 |
|
foelrni |
⊢ ( ( 𝐹 : 𝐵 –onto→ 𝑌 ∧ 𝑦 ∈ 𝑌 ) → ∃ 𝑛 ∈ 𝐵 ( 𝐹 ‘ 𝑛 ) = 𝑦 ) |
158 |
156 76 157
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ∃ 𝑛 ∈ 𝐵 ( 𝐹 ‘ 𝑛 ) = 𝑦 ) |
159 |
|
nfv |
⊢ Ⅎ 𝑛 ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) |
160 |
5
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐵 ) → 𝑛 ∈ ℕ ) |
161 |
160
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑛 ) = 𝑦 ) → 𝑛 ∈ ℕ ) |
162 |
160 90 135
|
sylancl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐵 ) → ( 𝐴 ‘ 𝑛 ) = if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) ) |
163 |
162 10
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐵 ) → ( 𝐴 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑛 ) ) |
164 |
163
|
3adant3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑛 ) = 𝑦 ) → ( 𝐴 ‘ 𝑛 ) = ( 𝐹 ‘ 𝑛 ) ) |
165 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑛 ) = 𝑦 ) → ( 𝐹 ‘ 𝑛 ) = 𝑦 ) |
166 |
164 165
|
eqtr2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑛 ) = 𝑦 ) → 𝑦 = ( 𝐴 ‘ 𝑛 ) ) |
167 |
161 166 103
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐵 ∧ ( 𝐹 ‘ 𝑛 ) = 𝑦 ) → ∃ 𝑛 ∈ ℕ 𝑦 = ( 𝐴 ‘ 𝑛 ) ) |
168 |
167
|
3exp |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝐵 → ( ( 𝐹 ‘ 𝑛 ) = 𝑦 → ∃ 𝑛 ∈ ℕ 𝑦 = ( 𝐴 ‘ 𝑛 ) ) ) ) |
169 |
168
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑛 ∈ 𝐵 → ( ( 𝐹 ‘ 𝑛 ) = 𝑦 → ∃ 𝑛 ∈ ℕ 𝑦 = ( 𝐴 ‘ 𝑛 ) ) ) ) |
170 |
159 81 169
|
rexlimd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( ∃ 𝑛 ∈ 𝐵 ( 𝐹 ‘ 𝑛 ) = 𝑦 → ∃ 𝑛 ∈ ℕ 𝑦 = ( 𝐴 ‘ 𝑛 ) ) ) |
171 |
158 170
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ∃ 𝑛 ∈ ℕ 𝑦 = ( 𝐴 ‘ 𝑛 ) ) |
172 |
148 155 171
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ ¬ 𝐵 = ℕ ) ∧ 𝑦 ∈ ( 𝑌 ∪ { ∅ } ) ) ∧ ¬ 𝑦 = ∅ ) → ∃ 𝑛 ∈ ℕ 𝑦 = ( 𝐴 ‘ 𝑛 ) ) |
173 |
147 172
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ ¬ 𝐵 = ℕ ) ∧ 𝑦 ∈ ( 𝑌 ∪ { ∅ } ) ) → ∃ 𝑛 ∈ ℕ 𝑦 = ( 𝐴 ‘ 𝑛 ) ) |
174 |
173
|
ralrimiva |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 = ℕ ) → ∀ 𝑦 ∈ ( 𝑌 ∪ { ∅ } ) ∃ 𝑛 ∈ ℕ 𝑦 = ( 𝐴 ‘ 𝑛 ) ) |
175 |
121 174
|
jca |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 = ℕ ) → ( 𝐴 : ℕ ⟶ ( 𝑌 ∪ { ∅ } ) ∧ ∀ 𝑦 ∈ ( 𝑌 ∪ { ∅ } ) ∃ 𝑛 ∈ ℕ 𝑦 = ( 𝐴 ‘ 𝑛 ) ) ) |
176 |
|
dffo3 |
⊢ ( 𝐴 : ℕ –onto→ ( 𝑌 ∪ { ∅ } ) ↔ ( 𝐴 : ℕ ⟶ ( 𝑌 ∪ { ∅ } ) ∧ ∀ 𝑦 ∈ ( 𝑌 ∪ { ∅ } ) ∃ 𝑛 ∈ ℕ 𝑦 = ( 𝐴 ‘ 𝑛 ) ) ) |
177 |
175 176
|
sylibr |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 = ℕ ) → 𝐴 : ℕ –onto→ ( 𝑌 ∪ { ∅ } ) ) |
178 |
|
founiiun |
⊢ ( 𝐴 : ℕ –onto→ ( 𝑌 ∪ { ∅ } ) → ∪ ( 𝑌 ∪ { ∅ } ) = ∪ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) ) |
179 |
177 178
|
syl |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 = ℕ ) → ∪ ( 𝑌 ∪ { ∅ } ) = ∪ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) ) |
180 |
120 179
|
eqtrd |
⊢ ( ( 𝜑 ∧ ¬ 𝐵 = ℕ ) → ∪ 𝑌 = ∪ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) ) |
181 |
114 180
|
pm2.61dan |
⊢ ( 𝜑 → ∪ 𝑌 = ∪ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) ) |
182 |
181
|
fveq2d |
⊢ ( 𝜑 → ( 𝑂 ‘ ∪ 𝑌 ) = ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) ) ) |
183 |
|
uncom |
⊢ ( ( ℕ ∖ 𝐵 ) ∪ 𝐵 ) = ( 𝐵 ∪ ( ℕ ∖ 𝐵 ) ) |
184 |
183
|
a1i |
⊢ ( 𝜑 → ( ( ℕ ∖ 𝐵 ) ∪ 𝐵 ) = ( 𝐵 ∪ ( ℕ ∖ 𝐵 ) ) ) |
185 |
|
undif |
⊢ ( 𝐵 ⊆ ℕ ↔ ( 𝐵 ∪ ( ℕ ∖ 𝐵 ) ) = ℕ ) |
186 |
5 185
|
sylib |
⊢ ( 𝜑 → ( 𝐵 ∪ ( ℕ ∖ 𝐵 ) ) = ℕ ) |
187 |
184 186
|
eqtrd |
⊢ ( 𝜑 → ( ( ℕ ∖ 𝐵 ) ∪ 𝐵 ) = ℕ ) |
188 |
187
|
eqcomd |
⊢ ( 𝜑 → ℕ = ( ( ℕ ∖ 𝐵 ) ∪ 𝐵 ) ) |
189 |
188
|
mpteq1d |
⊢ ( 𝜑 → ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ( ( ℕ ∖ 𝐵 ) ∪ 𝐵 ) ↦ ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) |
190 |
189
|
fveq2d |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( ( ℕ ∖ 𝐵 ) ∪ 𝐵 ) ↦ ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) ) |
191 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
192 |
|
difexg |
⊢ ( ℕ ∈ V → ( ℕ ∖ 𝐵 ) ∈ V ) |
193 |
36 192
|
ax-mp |
⊢ ( ℕ ∖ 𝐵 ) ∈ V |
194 |
193
|
a1i |
⊢ ( 𝜑 → ( ℕ ∖ 𝐵 ) ∈ V ) |
195 |
36
|
a1i |
⊢ ( 𝜑 → ℕ ∈ V ) |
196 |
195 5
|
ssexd |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
197 |
|
disjdifr |
⊢ ( ( ℕ ∖ 𝐵 ) ∩ 𝐵 ) = ∅ |
198 |
197
|
a1i |
⊢ ( 𝜑 → ( ( ℕ ∖ 𝐵 ) ∩ 𝐵 ) = ∅ ) |
199 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ 𝐵 ) ) → 𝜑 ) |
200 |
|
eldifi |
⊢ ( 𝑛 ∈ ( ℕ ∖ 𝐵 ) → 𝑛 ∈ ℕ ) |
201 |
200
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ 𝐵 ) ) → 𝑛 ∈ ℕ ) |
202 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → 𝑂 : 𝒫 𝑋 ⟶ ( 0 [,] +∞ ) ) |
203 |
35
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐴 ‘ 𝑛 ) ∈ 𝒫 𝑋 ) |
204 |
202 203
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ ( 0 [,] +∞ ) ) |
205 |
199 201 204
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ 𝐵 ) ) → ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ ( 0 [,] +∞ ) ) |
206 |
160 204
|
syldan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐵 ) → ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ∈ ( 0 [,] +∞ ) ) |
207 |
191 194 196 198 205 206
|
sge0splitmpt |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ ( ( ℕ ∖ 𝐵 ) ∪ 𝐵 ) ↦ ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) = ( ( Σ^ ‘ ( 𝑛 ∈ ( ℕ ∖ 𝐵 ) ↦ ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) +𝑒 ( Σ^ ‘ ( 𝑛 ∈ 𝐵 ↦ ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) ) ) |
208 |
|
eqid |
⊢ ( 𝑛 ∈ 𝐵 ↦ ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ 𝐵 ↦ ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) |
209 |
206 208
|
fmptd |
⊢ ( 𝜑 → ( 𝑛 ∈ 𝐵 ↦ ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) : 𝐵 ⟶ ( 0 [,] +∞ ) ) |
210 |
196 209
|
sge0xrcl |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ 𝐵 ↦ ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) ∈ ℝ* ) |
211 |
210
|
xaddid2d |
⊢ ( 𝜑 → ( 0 +𝑒 ( Σ^ ‘ ( 𝑛 ∈ 𝐵 ↦ ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ 𝐵 ↦ ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) ) |
212 |
90
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ 𝐵 ) ) → if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) ∈ V ) |
213 |
201 212 135
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ 𝐵 ) ) → ( 𝐴 ‘ 𝑛 ) = if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) ) |
214 |
|
eldifn |
⊢ ( 𝑛 ∈ ( ℕ ∖ 𝐵 ) → ¬ 𝑛 ∈ 𝐵 ) |
215 |
214
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ 𝐵 ) ) → ¬ 𝑛 ∈ 𝐵 ) |
216 |
215
|
iffalsed |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ 𝐵 ) ) → if ( 𝑛 ∈ 𝐵 , ( 𝐹 ‘ 𝑛 ) , ∅ ) = ∅ ) |
217 |
213 216
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ 𝐵 ) ) → ( 𝐴 ‘ 𝑛 ) = ∅ ) |
218 |
217
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ 𝐵 ) ) → ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) = ( 𝑂 ‘ ∅ ) ) |
219 |
199 2
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ 𝐵 ) ) → ( 𝑂 ‘ ∅ ) = 0 ) |
220 |
218 219
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ 𝐵 ) ) → ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) = 0 ) |
221 |
220
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑛 ∈ ( ℕ ∖ 𝐵 ) ↦ ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) = ( 𝑛 ∈ ( ℕ ∖ 𝐵 ) ↦ 0 ) ) |
222 |
221
|
fveq2d |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ ( ℕ ∖ 𝐵 ) ↦ ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ ( ℕ ∖ 𝐵 ) ↦ 0 ) ) ) |
223 |
191 194
|
sge0z |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ ( ℕ ∖ 𝐵 ) ↦ 0 ) ) = 0 ) |
224 |
222 223
|
eqtrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ ( ℕ ∖ 𝐵 ) ↦ ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) = 0 ) |
225 |
224
|
oveq1d |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑛 ∈ ( ℕ ∖ 𝐵 ) ↦ ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) +𝑒 ( Σ^ ‘ ( 𝑛 ∈ 𝐵 ↦ ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) ) = ( 0 +𝑒 ( Σ^ ‘ ( 𝑛 ∈ 𝐵 ↦ ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) ) ) |
226 |
1 3
|
feqresmpt |
⊢ ( 𝜑 → ( 𝑂 ↾ 𝑌 ) = ( 𝑦 ∈ 𝑌 ↦ ( 𝑂 ‘ 𝑦 ) ) ) |
227 |
226
|
fveq2d |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑂 ↾ 𝑌 ) ) = ( Σ^ ‘ ( 𝑦 ∈ 𝑌 ↦ ( 𝑂 ‘ 𝑦 ) ) ) ) |
228 |
|
nfv |
⊢ Ⅎ 𝑦 𝜑 |
229 |
|
fveq2 |
⊢ ( 𝑦 = ( 𝐴 ‘ 𝑛 ) → ( 𝑂 ‘ 𝑦 ) = ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) |
230 |
163
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ 𝐵 ) → ( 𝐹 ‘ 𝑛 ) = ( 𝐴 ‘ 𝑛 ) ) |
231 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝑂 : 𝒫 𝑋 ⟶ ( 0 [,] +∞ ) ) |
232 |
3
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → 𝑦 ∈ 𝒫 𝑋 ) |
233 |
231 232
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑦 ∈ 𝑌 ) → ( 𝑂 ‘ 𝑦 ) ∈ ( 0 [,] +∞ ) ) |
234 |
228 191 229 196 6 230 233
|
sge0f1o |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑦 ∈ 𝑌 ↦ ( 𝑂 ‘ 𝑦 ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ 𝐵 ↦ ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) ) |
235 |
|
eqidd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ 𝐵 ↦ ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ 𝐵 ↦ ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) ) |
236 |
227 234 235
|
3eqtrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑂 ↾ 𝑌 ) ) = ( Σ^ ‘ ( 𝑛 ∈ 𝐵 ↦ ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) ) |
237 |
211 225 236
|
3eqtr4d |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑛 ∈ ( ℕ ∖ 𝐵 ) ↦ ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) +𝑒 ( Σ^ ‘ ( 𝑛 ∈ 𝐵 ↦ ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) ) = ( Σ^ ‘ ( 𝑂 ↾ 𝑌 ) ) ) |
238 |
190 207 237
|
3eqtrrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑂 ↾ 𝑌 ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) ) |
239 |
182 238
|
breq12d |
⊢ ( 𝜑 → ( ( 𝑂 ‘ ∪ 𝑌 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑌 ) ) ↔ ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝐴 ‘ 𝑛 ) ) ≤ ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝐴 ‘ 𝑛 ) ) ) ) ) ) |
240 |
52 239
|
mpbird |
⊢ ( 𝜑 → ( 𝑂 ‘ ∪ 𝑌 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑌 ) ) ) |