| Step |
Hyp |
Ref |
Expression |
| 1 |
|
isomennd.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 2 |
|
isomennd.o |
⊢ ( 𝜑 → 𝑂 : 𝒫 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 3 |
|
isomennd.o0 |
⊢ ( 𝜑 → ( 𝑂 ‘ ∅ ) = 0 ) |
| 4 |
|
isomennd.le |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ 𝑋 ∧ 𝑦 ⊆ 𝑥 ) → ( 𝑂 ‘ 𝑦 ) ≤ ( 𝑂 ‘ 𝑥 ) ) |
| 5 |
|
isomennd.sa |
⊢ ( ( 𝜑 ∧ 𝑎 : ℕ ⟶ 𝒫 𝑋 ) → ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝑎 ‘ 𝑛 ) ) ≤ ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝑎 ‘ 𝑛 ) ) ) ) ) |
| 6 |
|
id |
⊢ ( 𝑂 : 𝒫 𝑋 ⟶ ( 0 [,] +∞ ) → 𝑂 : 𝒫 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 7 |
|
fdm |
⊢ ( 𝑂 : 𝒫 𝑋 ⟶ ( 0 [,] +∞ ) → dom 𝑂 = 𝒫 𝑋 ) |
| 8 |
7
|
feq2d |
⊢ ( 𝑂 : 𝒫 𝑋 ⟶ ( 0 [,] +∞ ) → ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ↔ 𝑂 : 𝒫 𝑋 ⟶ ( 0 [,] +∞ ) ) ) |
| 9 |
6 8
|
mpbird |
⊢ ( 𝑂 : 𝒫 𝑋 ⟶ ( 0 [,] +∞ ) → 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ) |
| 10 |
2 9
|
syl |
⊢ ( 𝜑 → 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ) |
| 11 |
|
unipw |
⊢ ∪ 𝒫 𝑋 = 𝑋 |
| 12 |
11
|
pweqi |
⊢ 𝒫 ∪ 𝒫 𝑋 = 𝒫 𝑋 |
| 13 |
12
|
a1i |
⊢ ( 𝜑 → 𝒫 ∪ 𝒫 𝑋 = 𝒫 𝑋 ) |
| 14 |
2 7
|
syl |
⊢ ( 𝜑 → dom 𝑂 = 𝒫 𝑋 ) |
| 15 |
14
|
unieqd |
⊢ ( 𝜑 → ∪ dom 𝑂 = ∪ 𝒫 𝑋 ) |
| 16 |
15
|
pweqd |
⊢ ( 𝜑 → 𝒫 ∪ dom 𝑂 = 𝒫 ∪ 𝒫 𝑋 ) |
| 17 |
13 16 14
|
3eqtr4rd |
⊢ ( 𝜑 → dom 𝑂 = 𝒫 ∪ dom 𝑂 ) |
| 18 |
10 17 3
|
jca31 |
⊢ ( 𝜑 → ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ) |
| 19 |
|
simpl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 ∪ dom 𝑂 ∧ 𝑦 ∈ 𝒫 𝑥 ) ) → 𝜑 ) |
| 20 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 ∪ dom 𝑂 ) → 𝑥 ∈ 𝒫 ∪ dom 𝑂 ) |
| 21 |
16 13
|
eqtrd |
⊢ ( 𝜑 → 𝒫 ∪ dom 𝑂 = 𝒫 𝑋 ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 ∪ dom 𝑂 ) → 𝒫 ∪ dom 𝑂 = 𝒫 𝑋 ) |
| 23 |
20 22
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 ∪ dom 𝑂 ) → 𝑥 ∈ 𝒫 𝑋 ) |
| 24 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝑋 → 𝑥 ⊆ 𝑋 ) |
| 25 |
23 24
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 ∪ dom 𝑂 ) → 𝑥 ⊆ 𝑋 ) |
| 26 |
25
|
adantrr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 ∪ dom 𝑂 ∧ 𝑦 ∈ 𝒫 𝑥 ) ) → 𝑥 ⊆ 𝑋 ) |
| 27 |
|
elpwi |
⊢ ( 𝑦 ∈ 𝒫 𝑥 → 𝑦 ⊆ 𝑥 ) |
| 28 |
27
|
adantl |
⊢ ( ( 𝑥 ∈ 𝒫 ∪ dom 𝑂 ∧ 𝑦 ∈ 𝒫 𝑥 ) → 𝑦 ⊆ 𝑥 ) |
| 29 |
28
|
adantl |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 ∪ dom 𝑂 ∧ 𝑦 ∈ 𝒫 𝑥 ) ) → 𝑦 ⊆ 𝑥 ) |
| 30 |
19 26 29 4
|
syl3anc |
⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝒫 ∪ dom 𝑂 ∧ 𝑦 ∈ 𝒫 𝑥 ) ) → ( 𝑂 ‘ 𝑦 ) ≤ ( 𝑂 ‘ 𝑥 ) ) |
| 31 |
30
|
ralrimivva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝒫 ∪ dom 𝑂 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑂 ‘ 𝑦 ) ≤ ( 𝑂 ‘ 𝑥 ) ) |
| 32 |
|
0le0 |
⊢ 0 ≤ 0 |
| 33 |
32
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑥 = ∅ ) → 0 ≤ 0 ) |
| 34 |
|
unieq |
⊢ ( 𝑥 = ∅ → ∪ 𝑥 = ∪ ∅ ) |
| 35 |
|
uni0 |
⊢ ∪ ∅ = ∅ |
| 36 |
35
|
a1i |
⊢ ( 𝑥 = ∅ → ∪ ∅ = ∅ ) |
| 37 |
34 36
|
eqtrd |
⊢ ( 𝑥 = ∅ → ∪ 𝑥 = ∅ ) |
| 38 |
37
|
fveq2d |
⊢ ( 𝑥 = ∅ → ( 𝑂 ‘ ∪ 𝑥 ) = ( 𝑂 ‘ ∅ ) ) |
| 39 |
38
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = ∅ ) → ( 𝑂 ‘ ∪ 𝑥 ) = ( 𝑂 ‘ ∅ ) ) |
| 40 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 = ∅ ) → ( 𝑂 ‘ ∅ ) = 0 ) |
| 41 |
39 40
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 = ∅ ) → ( 𝑂 ‘ ∪ 𝑥 ) = 0 ) |
| 42 |
|
reseq2 |
⊢ ( 𝑥 = ∅ → ( 𝑂 ↾ 𝑥 ) = ( 𝑂 ↾ ∅ ) ) |
| 43 |
|
res0 |
⊢ ( 𝑂 ↾ ∅ ) = ∅ |
| 44 |
43
|
a1i |
⊢ ( 𝑥 = ∅ → ( 𝑂 ↾ ∅ ) = ∅ ) |
| 45 |
42 44
|
eqtrd |
⊢ ( 𝑥 = ∅ → ( 𝑂 ↾ 𝑥 ) = ∅ ) |
| 46 |
45
|
fveq2d |
⊢ ( 𝑥 = ∅ → ( Σ^ ‘ ( 𝑂 ↾ 𝑥 ) ) = ( Σ^ ‘ ∅ ) ) |
| 47 |
|
sge00 |
⊢ ( Σ^ ‘ ∅ ) = 0 |
| 48 |
47
|
a1i |
⊢ ( 𝑥 = ∅ → ( Σ^ ‘ ∅ ) = 0 ) |
| 49 |
46 48
|
eqtrd |
⊢ ( 𝑥 = ∅ → ( Σ^ ‘ ( 𝑂 ↾ 𝑥 ) ) = 0 ) |
| 50 |
49
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑥 = ∅ ) → ( Σ^ ‘ ( 𝑂 ↾ 𝑥 ) ) = 0 ) |
| 51 |
41 50
|
breq12d |
⊢ ( ( 𝜑 ∧ 𝑥 = ∅ ) → ( ( 𝑂 ‘ ∪ 𝑥 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑥 ) ) ↔ 0 ≤ 0 ) ) |
| 52 |
33 51
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑥 = ∅ ) → ( 𝑂 ‘ ∪ 𝑥 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑥 ) ) ) |
| 53 |
52
|
ad4ant14 |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑂 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 = ∅ ) → ( 𝑂 ‘ ∪ 𝑥 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑥 ) ) ) |
| 54 |
|
simpl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑂 ) ∧ 𝑥 ≼ ω ) ∧ ¬ 𝑥 = ∅ ) → ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑂 ) ∧ 𝑥 ≼ ω ) ) |
| 55 |
|
neqne |
⊢ ( ¬ 𝑥 = ∅ → 𝑥 ≠ ∅ ) |
| 56 |
55
|
adantl |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑂 ) ∧ 𝑥 ≼ ω ) ∧ ¬ 𝑥 = ∅ ) → 𝑥 ≠ ∅ ) |
| 57 |
|
ssnnf1octb |
⊢ ( ( 𝑥 ≼ ω ∧ 𝑥 ≠ ∅ ) → ∃ 𝑓 ( dom 𝑓 ⊆ ℕ ∧ 𝑓 : dom 𝑓 –1-1-onto→ 𝑥 ) ) |
| 58 |
57
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑂 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) → ∃ 𝑓 ( dom 𝑓 ⊆ ℕ ∧ 𝑓 : dom 𝑓 –1-1-onto→ 𝑥 ) ) |
| 59 |
2
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑂 ) ∧ ( dom 𝑓 ⊆ ℕ ∧ 𝑓 : dom 𝑓 –1-1-onto→ 𝑥 ) ) → 𝑂 : 𝒫 𝑋 ⟶ ( 0 [,] +∞ ) ) |
| 60 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑂 ) ∧ ( dom 𝑓 ⊆ ℕ ∧ 𝑓 : dom 𝑓 –1-1-onto→ 𝑥 ) ) → ( 𝑂 ‘ ∅ ) = 0 ) |
| 61 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑂 ) → 𝑥 ∈ 𝒫 dom 𝑂 ) |
| 62 |
14
|
pweqd |
⊢ ( 𝜑 → 𝒫 dom 𝑂 = 𝒫 𝒫 𝑋 ) |
| 63 |
62
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑂 ) → 𝒫 dom 𝑂 = 𝒫 𝒫 𝑋 ) |
| 64 |
61 63
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑂 ) → 𝑥 ∈ 𝒫 𝒫 𝑋 ) |
| 65 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 𝒫 𝑋 → 𝑥 ⊆ 𝒫 𝑋 ) |
| 66 |
64 65
|
syl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑂 ) → 𝑥 ⊆ 𝒫 𝑋 ) |
| 67 |
66
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑂 ) ∧ ( dom 𝑓 ⊆ ℕ ∧ 𝑓 : dom 𝑓 –1-1-onto→ 𝑥 ) ) → 𝑥 ⊆ 𝒫 𝑋 ) |
| 68 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑂 ) → 𝜑 ) |
| 69 |
68 5
|
sylan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑂 ) ∧ 𝑎 : ℕ ⟶ 𝒫 𝑋 ) → ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝑎 ‘ 𝑛 ) ) ≤ ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝑎 ‘ 𝑛 ) ) ) ) ) |
| 70 |
69
|
adantlr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑂 ) ∧ ( dom 𝑓 ⊆ ℕ ∧ 𝑓 : dom 𝑓 –1-1-onto→ 𝑥 ) ) ∧ 𝑎 : ℕ ⟶ 𝒫 𝑋 ) → ( 𝑂 ‘ ∪ 𝑛 ∈ ℕ ( 𝑎 ‘ 𝑛 ) ) ≤ ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( 𝑂 ‘ ( 𝑎 ‘ 𝑛 ) ) ) ) ) |
| 71 |
|
simprl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑂 ) ∧ ( dom 𝑓 ⊆ ℕ ∧ 𝑓 : dom 𝑓 –1-1-onto→ 𝑥 ) ) → dom 𝑓 ⊆ ℕ ) |
| 72 |
|
simprr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑂 ) ∧ ( dom 𝑓 ⊆ ℕ ∧ 𝑓 : dom 𝑓 –1-1-onto→ 𝑥 ) ) → 𝑓 : dom 𝑓 –1-1-onto→ 𝑥 ) |
| 73 |
|
eleq1w |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 ∈ dom 𝑓 ↔ 𝑛 ∈ dom 𝑓 ) ) |
| 74 |
|
fveq2 |
⊢ ( 𝑚 = 𝑛 → ( 𝑓 ‘ 𝑚 ) = ( 𝑓 ‘ 𝑛 ) ) |
| 75 |
73 74
|
ifbieq1d |
⊢ ( 𝑚 = 𝑛 → if ( 𝑚 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑚 ) , ∅ ) = if ( 𝑛 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑛 ) , ∅ ) ) |
| 76 |
75
|
cbvmptv |
⊢ ( 𝑚 ∈ ℕ ↦ if ( 𝑚 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑚 ) , ∅ ) ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 ∈ dom 𝑓 , ( 𝑓 ‘ 𝑛 ) , ∅ ) ) |
| 77 |
59 60 67 70 71 72 76
|
isomenndlem |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑂 ) ∧ ( dom 𝑓 ⊆ ℕ ∧ 𝑓 : dom 𝑓 –1-1-onto→ 𝑥 ) ) → ( 𝑂 ‘ ∪ 𝑥 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑥 ) ) ) |
| 78 |
77
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑂 ) → ( ( dom 𝑓 ⊆ ℕ ∧ 𝑓 : dom 𝑓 –1-1-onto→ 𝑥 ) → ( 𝑂 ‘ ∪ 𝑥 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑥 ) ) ) ) |
| 79 |
78
|
ad2antrr |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑂 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) → ( ( dom 𝑓 ⊆ ℕ ∧ 𝑓 : dom 𝑓 –1-1-onto→ 𝑥 ) → ( 𝑂 ‘ ∪ 𝑥 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑥 ) ) ) ) |
| 80 |
79
|
exlimdv |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑂 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) → ( ∃ 𝑓 ( dom 𝑓 ⊆ ℕ ∧ 𝑓 : dom 𝑓 –1-1-onto→ 𝑥 ) → ( 𝑂 ‘ ∪ 𝑥 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑥 ) ) ) ) |
| 81 |
58 80
|
mpd |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑂 ) ∧ 𝑥 ≼ ω ) ∧ 𝑥 ≠ ∅ ) → ( 𝑂 ‘ ∪ 𝑥 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑥 ) ) ) |
| 82 |
54 56 81
|
syl2anc |
⊢ ( ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑂 ) ∧ 𝑥 ≼ ω ) ∧ ¬ 𝑥 = ∅ ) → ( 𝑂 ‘ ∪ 𝑥 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑥 ) ) ) |
| 83 |
53 82
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑂 ) ∧ 𝑥 ≼ ω ) → ( 𝑂 ‘ ∪ 𝑥 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑥 ) ) ) |
| 84 |
83
|
ex |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝒫 dom 𝑂 ) → ( 𝑥 ≼ ω → ( 𝑂 ‘ ∪ 𝑥 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑥 ) ) ) ) |
| 85 |
84
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝒫 dom 𝑂 ( 𝑥 ≼ ω → ( 𝑂 ‘ ∪ 𝑥 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑥 ) ) ) ) |
| 86 |
18 31 85
|
jca31 |
⊢ ( 𝜑 → ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 ∪ dom 𝑂 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑂 ‘ 𝑦 ) ≤ ( 𝑂 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑂 ( 𝑥 ≼ ω → ( 𝑂 ‘ ∪ 𝑥 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑥 ) ) ) ) ) |
| 87 |
1
|
pwexd |
⊢ ( 𝜑 → 𝒫 𝑋 ∈ V ) |
| 88 |
2 87
|
fexd |
⊢ ( 𝜑 → 𝑂 ∈ V ) |
| 89 |
|
isome |
⊢ ( 𝑂 ∈ V → ( 𝑂 ∈ OutMeas ↔ ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 ∪ dom 𝑂 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑂 ‘ 𝑦 ) ≤ ( 𝑂 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑂 ( 𝑥 ≼ ω → ( 𝑂 ‘ ∪ 𝑥 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑥 ) ) ) ) ) ) |
| 90 |
88 89
|
syl |
⊢ ( 𝜑 → ( 𝑂 ∈ OutMeas ↔ ( ( ( ( 𝑂 : dom 𝑂 ⟶ ( 0 [,] +∞ ) ∧ dom 𝑂 = 𝒫 ∪ dom 𝑂 ) ∧ ( 𝑂 ‘ ∅ ) = 0 ) ∧ ∀ 𝑥 ∈ 𝒫 ∪ dom 𝑂 ∀ 𝑦 ∈ 𝒫 𝑥 ( 𝑂 ‘ 𝑦 ) ≤ ( 𝑂 ‘ 𝑥 ) ) ∧ ∀ 𝑥 ∈ 𝒫 dom 𝑂 ( 𝑥 ≼ ω → ( 𝑂 ‘ ∪ 𝑥 ) ≤ ( Σ^ ‘ ( 𝑂 ↾ 𝑥 ) ) ) ) ) ) |
| 91 |
86 90
|
mpbird |
⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) |