Metamath Proof Explorer


Theorem caragenel2d

Description: Membership in the Caratheodory's construction. Similar to carageneld , but here "less then or equal to" is used, instead of equality. This is Remark 113D of Fremlin1 p. 21. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses caragenel2d.o ( 𝜑𝑂 ∈ OutMeas )
caragenel2d.x 𝑋 = dom 𝑂
caragenel2d.s 𝑆 = ( CaraGen ‘ 𝑂 )
caragenel2d.e ( 𝜑𝐸 ∈ 𝒫 𝑋 )
caragenel2d.a ( ( 𝜑𝑎 ∈ 𝒫 𝑋 ) → ( ( 𝑂 ‘ ( 𝑎𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝐸 ) ) ) ≤ ( 𝑂𝑎 ) )
Assertion caragenel2d ( 𝜑𝐸𝑆 )

Proof

Step Hyp Ref Expression
1 caragenel2d.o ( 𝜑𝑂 ∈ OutMeas )
2 caragenel2d.x 𝑋 = dom 𝑂
3 caragenel2d.s 𝑆 = ( CaraGen ‘ 𝑂 )
4 caragenel2d.e ( 𝜑𝐸 ∈ 𝒫 𝑋 )
5 caragenel2d.a ( ( 𝜑𝑎 ∈ 𝒫 𝑋 ) → ( ( 𝑂 ‘ ( 𝑎𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝐸 ) ) ) ≤ ( 𝑂𝑎 ) )
6 1 adantr ( ( 𝜑𝑎 ∈ 𝒫 𝑋 ) → 𝑂 ∈ OutMeas )
7 inss1 ( 𝑎𝐸 ) ⊆ 𝑎
8 elpwi ( 𝑎 ∈ 𝒫 𝑋𝑎𝑋 )
9 7 8 sstrid ( 𝑎 ∈ 𝒫 𝑋 → ( 𝑎𝐸 ) ⊆ 𝑋 )
10 9 adantl ( ( 𝜑𝑎 ∈ 𝒫 𝑋 ) → ( 𝑎𝐸 ) ⊆ 𝑋 )
11 6 2 10 omexrcl ( ( 𝜑𝑎 ∈ 𝒫 𝑋 ) → ( 𝑂 ‘ ( 𝑎𝐸 ) ) ∈ ℝ* )
12 8 ssdifssd ( 𝑎 ∈ 𝒫 𝑋 → ( 𝑎𝐸 ) ⊆ 𝑋 )
13 12 adantl ( ( 𝜑𝑎 ∈ 𝒫 𝑋 ) → ( 𝑎𝐸 ) ⊆ 𝑋 )
14 6 2 13 omexrcl ( ( 𝜑𝑎 ∈ 𝒫 𝑋 ) → ( 𝑂 ‘ ( 𝑎𝐸 ) ) ∈ ℝ* )
15 xaddcl ( ( ( 𝑂 ‘ ( 𝑎𝐸 ) ) ∈ ℝ* ∧ ( 𝑂 ‘ ( 𝑎𝐸 ) ) ∈ ℝ* ) → ( ( 𝑂 ‘ ( 𝑎𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝐸 ) ) ) ∈ ℝ* )
16 11 14 15 syl2anc ( ( 𝜑𝑎 ∈ 𝒫 𝑋 ) → ( ( 𝑂 ‘ ( 𝑎𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝐸 ) ) ) ∈ ℝ* )
17 8 adantl ( ( 𝜑𝑎 ∈ 𝒫 𝑋 ) → 𝑎𝑋 )
18 6 2 17 omexrcl ( ( 𝜑𝑎 ∈ 𝒫 𝑋 ) → ( 𝑂𝑎 ) ∈ ℝ* )
19 6 2 17 omelesplit ( ( 𝜑𝑎 ∈ 𝒫 𝑋 ) → ( 𝑂𝑎 ) ≤ ( ( 𝑂 ‘ ( 𝑎𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝐸 ) ) ) )
20 16 18 5 19 xrletrid ( ( 𝜑𝑎 ∈ 𝒫 𝑋 ) → ( ( 𝑂 ‘ ( 𝑎𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝐸 ) ) ) = ( 𝑂𝑎 ) )
21 1 2 3 4 20 carageneld ( 𝜑𝐸𝑆 )