| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caragenel2d.o |
⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) |
| 2 |
|
caragenel2d.x |
⊢ 𝑋 = ∪ dom 𝑂 |
| 3 |
|
caragenel2d.s |
⊢ 𝑆 = ( CaraGen ‘ 𝑂 ) |
| 4 |
|
caragenel2d.e |
⊢ ( 𝜑 → 𝐸 ∈ 𝒫 𝑋 ) |
| 5 |
|
caragenel2d.a |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( ( 𝑂 ‘ ( 𝑎 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ) ≤ ( 𝑂 ‘ 𝑎 ) ) |
| 6 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → 𝑂 ∈ OutMeas ) |
| 7 |
|
inss1 |
⊢ ( 𝑎 ∩ 𝐸 ) ⊆ 𝑎 |
| 8 |
|
elpwi |
⊢ ( 𝑎 ∈ 𝒫 𝑋 → 𝑎 ⊆ 𝑋 ) |
| 9 |
7 8
|
sstrid |
⊢ ( 𝑎 ∈ 𝒫 𝑋 → ( 𝑎 ∩ 𝐸 ) ⊆ 𝑋 ) |
| 10 |
9
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( 𝑎 ∩ 𝐸 ) ⊆ 𝑋 ) |
| 11 |
6 2 10
|
omexrcl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( 𝑂 ‘ ( 𝑎 ∩ 𝐸 ) ) ∈ ℝ* ) |
| 12 |
8
|
ssdifssd |
⊢ ( 𝑎 ∈ 𝒫 𝑋 → ( 𝑎 ∖ 𝐸 ) ⊆ 𝑋 ) |
| 13 |
12
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( 𝑎 ∖ 𝐸 ) ⊆ 𝑋 ) |
| 14 |
6 2 13
|
omexrcl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ∈ ℝ* ) |
| 15 |
|
xaddcl |
⊢ ( ( ( 𝑂 ‘ ( 𝑎 ∩ 𝐸 ) ) ∈ ℝ* ∧ ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ∈ ℝ* ) → ( ( 𝑂 ‘ ( 𝑎 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ) ∈ ℝ* ) |
| 16 |
11 14 15
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( ( 𝑂 ‘ ( 𝑎 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ) ∈ ℝ* ) |
| 17 |
8
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → 𝑎 ⊆ 𝑋 ) |
| 18 |
6 2 17
|
omexrcl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( 𝑂 ‘ 𝑎 ) ∈ ℝ* ) |
| 19 |
6 2 17
|
omelesplit |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( 𝑂 ‘ 𝑎 ) ≤ ( ( 𝑂 ‘ ( 𝑎 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ) ) |
| 20 |
16 18 5 19
|
xrletrid |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( ( 𝑂 ‘ ( 𝑎 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ) = ( 𝑂 ‘ 𝑎 ) ) |
| 21 |
1 2 3 4 20
|
carageneld |
⊢ ( 𝜑 → 𝐸 ∈ 𝑆 ) |