Step |
Hyp |
Ref |
Expression |
1 |
|
caragenel2d.o |
|- ( ph -> O e. OutMeas ) |
2 |
|
caragenel2d.x |
|- X = U. dom O |
3 |
|
caragenel2d.s |
|- S = ( CaraGen ` O ) |
4 |
|
caragenel2d.e |
|- ( ph -> E e. ~P X ) |
5 |
|
caragenel2d.a |
|- ( ( ph /\ a e. ~P X ) -> ( ( O ` ( a i^i E ) ) +e ( O ` ( a \ E ) ) ) <_ ( O ` a ) ) |
6 |
1
|
adantr |
|- ( ( ph /\ a e. ~P X ) -> O e. OutMeas ) |
7 |
|
inss1 |
|- ( a i^i E ) C_ a |
8 |
|
elpwi |
|- ( a e. ~P X -> a C_ X ) |
9 |
7 8
|
sstrid |
|- ( a e. ~P X -> ( a i^i E ) C_ X ) |
10 |
9
|
adantl |
|- ( ( ph /\ a e. ~P X ) -> ( a i^i E ) C_ X ) |
11 |
6 2 10
|
omexrcl |
|- ( ( ph /\ a e. ~P X ) -> ( O ` ( a i^i E ) ) e. RR* ) |
12 |
8
|
ssdifssd |
|- ( a e. ~P X -> ( a \ E ) C_ X ) |
13 |
12
|
adantl |
|- ( ( ph /\ a e. ~P X ) -> ( a \ E ) C_ X ) |
14 |
6 2 13
|
omexrcl |
|- ( ( ph /\ a e. ~P X ) -> ( O ` ( a \ E ) ) e. RR* ) |
15 |
|
xaddcl |
|- ( ( ( O ` ( a i^i E ) ) e. RR* /\ ( O ` ( a \ E ) ) e. RR* ) -> ( ( O ` ( a i^i E ) ) +e ( O ` ( a \ E ) ) ) e. RR* ) |
16 |
11 14 15
|
syl2anc |
|- ( ( ph /\ a e. ~P X ) -> ( ( O ` ( a i^i E ) ) +e ( O ` ( a \ E ) ) ) e. RR* ) |
17 |
8
|
adantl |
|- ( ( ph /\ a e. ~P X ) -> a C_ X ) |
18 |
6 2 17
|
omexrcl |
|- ( ( ph /\ a e. ~P X ) -> ( O ` a ) e. RR* ) |
19 |
6 2 17
|
omelesplit |
|- ( ( ph /\ a e. ~P X ) -> ( O ` a ) <_ ( ( O ` ( a i^i E ) ) +e ( O ` ( a \ E ) ) ) ) |
20 |
16 18 5 19
|
xrletrid |
|- ( ( ph /\ a e. ~P X ) -> ( ( O ` ( a i^i E ) ) +e ( O ` ( a \ E ) ) ) = ( O ` a ) ) |
21 |
1 2 3 4 20
|
carageneld |
|- ( ph -> E e. S ) |