| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caragenel2d.o |
|- ( ph -> O e. OutMeas ) |
| 2 |
|
caragenel2d.x |
|- X = U. dom O |
| 3 |
|
caragenel2d.s |
|- S = ( CaraGen ` O ) |
| 4 |
|
caragenel2d.e |
|- ( ph -> E e. ~P X ) |
| 5 |
|
caragenel2d.a |
|- ( ( ph /\ a e. ~P X ) -> ( ( O ` ( a i^i E ) ) +e ( O ` ( a \ E ) ) ) <_ ( O ` a ) ) |
| 6 |
1
|
adantr |
|- ( ( ph /\ a e. ~P X ) -> O e. OutMeas ) |
| 7 |
|
inss1 |
|- ( a i^i E ) C_ a |
| 8 |
|
elpwi |
|- ( a e. ~P X -> a C_ X ) |
| 9 |
7 8
|
sstrid |
|- ( a e. ~P X -> ( a i^i E ) C_ X ) |
| 10 |
9
|
adantl |
|- ( ( ph /\ a e. ~P X ) -> ( a i^i E ) C_ X ) |
| 11 |
6 2 10
|
omexrcl |
|- ( ( ph /\ a e. ~P X ) -> ( O ` ( a i^i E ) ) e. RR* ) |
| 12 |
8
|
ssdifssd |
|- ( a e. ~P X -> ( a \ E ) C_ X ) |
| 13 |
12
|
adantl |
|- ( ( ph /\ a e. ~P X ) -> ( a \ E ) C_ X ) |
| 14 |
6 2 13
|
omexrcl |
|- ( ( ph /\ a e. ~P X ) -> ( O ` ( a \ E ) ) e. RR* ) |
| 15 |
|
xaddcl |
|- ( ( ( O ` ( a i^i E ) ) e. RR* /\ ( O ` ( a \ E ) ) e. RR* ) -> ( ( O ` ( a i^i E ) ) +e ( O ` ( a \ E ) ) ) e. RR* ) |
| 16 |
11 14 15
|
syl2anc |
|- ( ( ph /\ a e. ~P X ) -> ( ( O ` ( a i^i E ) ) +e ( O ` ( a \ E ) ) ) e. RR* ) |
| 17 |
8
|
adantl |
|- ( ( ph /\ a e. ~P X ) -> a C_ X ) |
| 18 |
6 2 17
|
omexrcl |
|- ( ( ph /\ a e. ~P X ) -> ( O ` a ) e. RR* ) |
| 19 |
6 2 17
|
omelesplit |
|- ( ( ph /\ a e. ~P X ) -> ( O ` a ) <_ ( ( O ` ( a i^i E ) ) +e ( O ` ( a \ E ) ) ) ) |
| 20 |
16 18 5 19
|
xrletrid |
|- ( ( ph /\ a e. ~P X ) -> ( ( O ` ( a i^i E ) ) +e ( O ` ( a \ E ) ) ) = ( O ` a ) ) |
| 21 |
1 2 3 4 20
|
carageneld |
|- ( ph -> E e. S ) |