Metamath Proof Explorer


Theorem caragenel2d

Description: Membership in the Caratheodory's construction. Similar to carageneld , but here "less then or equal to" is used, instead of equality. This is Remark 113D of Fremlin1 p. 21. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses caragenel2d.o φOOutMeas
caragenel2d.x X=domO
caragenel2d.s S=CaraGenO
caragenel2d.e φE𝒫X
caragenel2d.a φa𝒫XOaE+𝑒OaEOa
Assertion caragenel2d φES

Proof

Step Hyp Ref Expression
1 caragenel2d.o φOOutMeas
2 caragenel2d.x X=domO
3 caragenel2d.s S=CaraGenO
4 caragenel2d.e φE𝒫X
5 caragenel2d.a φa𝒫XOaE+𝑒OaEOa
6 1 adantr φa𝒫XOOutMeas
7 inss1 aEa
8 elpwi a𝒫XaX
9 7 8 sstrid a𝒫XaEX
10 9 adantl φa𝒫XaEX
11 6 2 10 omexrcl φa𝒫XOaE*
12 8 ssdifssd a𝒫XaEX
13 12 adantl φa𝒫XaEX
14 6 2 13 omexrcl φa𝒫XOaE*
15 xaddcl OaE*OaE*OaE+𝑒OaE*
16 11 14 15 syl2anc φa𝒫XOaE+𝑒OaE*
17 8 adantl φa𝒫XaX
18 6 2 17 omexrcl φa𝒫XOa*
19 6 2 17 omelesplit φa𝒫XOaOaE+𝑒OaE
20 16 18 5 19 xrletrid φa𝒫XOaE+𝑒OaE=Oa
21 1 2 3 4 20 carageneld φES