Metamath Proof Explorer


Theorem omege0

Description: If the outer measure of a set is greater than or equal to 0 . (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses omege0.o φ O OutMeas
omege0.x X = dom O
omege0.a φ A X
Assertion omege0 φ 0 O A

Proof

Step Hyp Ref Expression
1 omege0.o φ O OutMeas
2 omege0.x X = dom O
3 omege0.a φ A X
4 0xr 0 *
5 4 a1i φ 0 *
6 pnfxr +∞ *
7 6 a1i φ +∞ *
8 1 2 3 omecl φ O A 0 +∞
9 iccgelb 0 * +∞ * O A 0 +∞ 0 O A
10 5 7 8 9 syl3anc φ 0 O A