Metamath Proof Explorer


Theorem omess0

Description: If the outer measure of a set is 0 , then the outer measure of its subsets is 0 . (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses omess0.o φOOutMeas
omess0.x X=domO
omess0.a φAX
omess0.z φOA=0
omess0.s φBA
Assertion omess0 φOB=0

Proof

Step Hyp Ref Expression
1 omess0.o φOOutMeas
2 omess0.x X=domO
3 omess0.a φAX
4 omess0.z φOA=0
5 omess0.s φBA
6 5 3 sstrd φBX
7 1 2 6 omexrcl φOB*
8 0xr 0*
9 8 a1i φ0*
10 1 2 3 5 omessle φOBOA
11 10 4 breqtrd φOB0
12 1 2 6 omege0 φ0OB
13 7 9 11 12 xrletrid φOB=0