Metamath Proof Explorer


Theorem omess0

Description: If the outer measure of a set is 0 , then the outer measure of its subsets is 0 . (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses omess0.o ( 𝜑𝑂 ∈ OutMeas )
omess0.x 𝑋 = dom 𝑂
omess0.a ( 𝜑𝐴𝑋 )
omess0.z ( 𝜑 → ( 𝑂𝐴 ) = 0 )
omess0.s ( 𝜑𝐵𝐴 )
Assertion omess0 ( 𝜑 → ( 𝑂𝐵 ) = 0 )

Proof

Step Hyp Ref Expression
1 omess0.o ( 𝜑𝑂 ∈ OutMeas )
2 omess0.x 𝑋 = dom 𝑂
3 omess0.a ( 𝜑𝐴𝑋 )
4 omess0.z ( 𝜑 → ( 𝑂𝐴 ) = 0 )
5 omess0.s ( 𝜑𝐵𝐴 )
6 5 3 sstrd ( 𝜑𝐵𝑋 )
7 1 2 6 omexrcl ( 𝜑 → ( 𝑂𝐵 ) ∈ ℝ* )
8 0xr 0 ∈ ℝ*
9 8 a1i ( 𝜑 → 0 ∈ ℝ* )
10 1 2 3 5 omessle ( 𝜑 → ( 𝑂𝐵 ) ≤ ( 𝑂𝐴 ) )
11 10 4 breqtrd ( 𝜑 → ( 𝑂𝐵 ) ≤ 0 )
12 1 2 6 omege0 ( 𝜑 → 0 ≤ ( 𝑂𝐵 ) )
13 7 9 11 12 xrletrid ( 𝜑 → ( 𝑂𝐵 ) = 0 )