Metamath Proof Explorer


Theorem omess0

Description: If the outer measure of a set is 0 , then the outer measure of its subsets is 0 . (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses omess0.o
|- ( ph -> O e. OutMeas )
omess0.x
|- X = U. dom O
omess0.a
|- ( ph -> A C_ X )
omess0.z
|- ( ph -> ( O ` A ) = 0 )
omess0.s
|- ( ph -> B C_ A )
Assertion omess0
|- ( ph -> ( O ` B ) = 0 )

Proof

Step Hyp Ref Expression
1 omess0.o
 |-  ( ph -> O e. OutMeas )
2 omess0.x
 |-  X = U. dom O
3 omess0.a
 |-  ( ph -> A C_ X )
4 omess0.z
 |-  ( ph -> ( O ` A ) = 0 )
5 omess0.s
 |-  ( ph -> B C_ A )
6 5 3 sstrd
 |-  ( ph -> B C_ X )
7 1 2 6 omexrcl
 |-  ( ph -> ( O ` B ) e. RR* )
8 0xr
 |-  0 e. RR*
9 8 a1i
 |-  ( ph -> 0 e. RR* )
10 1 2 3 5 omessle
 |-  ( ph -> ( O ` B ) <_ ( O ` A ) )
11 10 4 breqtrd
 |-  ( ph -> ( O ` B ) <_ 0 )
12 1 2 6 omege0
 |-  ( ph -> 0 <_ ( O ` B ) )
13 7 9 11 12 xrletrid
 |-  ( ph -> ( O ` B ) = 0 )