| Step |
Hyp |
Ref |
Expression |
| 1 |
|
omess0.o |
|- ( ph -> O e. OutMeas ) |
| 2 |
|
omess0.x |
|- X = U. dom O |
| 3 |
|
omess0.a |
|- ( ph -> A C_ X ) |
| 4 |
|
omess0.z |
|- ( ph -> ( O ` A ) = 0 ) |
| 5 |
|
omess0.s |
|- ( ph -> B C_ A ) |
| 6 |
5 3
|
sstrd |
|- ( ph -> B C_ X ) |
| 7 |
1 2 6
|
omexrcl |
|- ( ph -> ( O ` B ) e. RR* ) |
| 8 |
|
0xr |
|- 0 e. RR* |
| 9 |
8
|
a1i |
|- ( ph -> 0 e. RR* ) |
| 10 |
1 2 3 5
|
omessle |
|- ( ph -> ( O ` B ) <_ ( O ` A ) ) |
| 11 |
10 4
|
breqtrd |
|- ( ph -> ( O ` B ) <_ 0 ) |
| 12 |
1 2 6
|
omege0 |
|- ( ph -> 0 <_ ( O ` B ) ) |
| 13 |
7 9 11 12
|
xrletrid |
|- ( ph -> ( O ` B ) = 0 ) |