Description: If the outer measure of a set is 0 , then the outer measure of its subsets is 0 . (Contributed by Glauco Siliprandi, 24-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | omess0.o | |- ( ph -> O e. OutMeas ) |
|
omess0.x | |- X = U. dom O |
||
omess0.a | |- ( ph -> A C_ X ) |
||
omess0.z | |- ( ph -> ( O ` A ) = 0 ) |
||
omess0.s | |- ( ph -> B C_ A ) |
||
Assertion | omess0 | |- ( ph -> ( O ` B ) = 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omess0.o | |- ( ph -> O e. OutMeas ) |
|
2 | omess0.x | |- X = U. dom O |
|
3 | omess0.a | |- ( ph -> A C_ X ) |
|
4 | omess0.z | |- ( ph -> ( O ` A ) = 0 ) |
|
5 | omess0.s | |- ( ph -> B C_ A ) |
|
6 | 5 3 | sstrd | |- ( ph -> B C_ X ) |
7 | 1 2 6 | omexrcl | |- ( ph -> ( O ` B ) e. RR* ) |
8 | 0xr | |- 0 e. RR* |
|
9 | 8 | a1i | |- ( ph -> 0 e. RR* ) |
10 | 1 2 3 5 | omessle | |- ( ph -> ( O ` B ) <_ ( O ` A ) ) |
11 | 10 4 | breqtrd | |- ( ph -> ( O ` B ) <_ 0 ) |
12 | 1 2 6 | omege0 | |- ( ph -> 0 <_ ( O ` B ) ) |
13 | 7 9 11 12 | xrletrid | |- ( ph -> ( O ` B ) = 0 ) |