Description: If the outer measure of a set is greater than or equal to 0 . (Contributed by Glauco Siliprandi, 24-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | omege0.o | |- ( ph -> O e. OutMeas ) |
|
omege0.x | |- X = U. dom O |
||
omege0.a | |- ( ph -> A C_ X ) |
||
Assertion | omege0 | |- ( ph -> 0 <_ ( O ` A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omege0.o | |- ( ph -> O e. OutMeas ) |
|
2 | omege0.x | |- X = U. dom O |
|
3 | omege0.a | |- ( ph -> A C_ X ) |
|
4 | 0xr | |- 0 e. RR* |
|
5 | 4 | a1i | |- ( ph -> 0 e. RR* ) |
6 | pnfxr | |- +oo e. RR* |
|
7 | 6 | a1i | |- ( ph -> +oo e. RR* ) |
8 | 1 2 3 | omecl | |- ( ph -> ( O ` A ) e. ( 0 [,] +oo ) ) |
9 | iccgelb | |- ( ( 0 e. RR* /\ +oo e. RR* /\ ( O ` A ) e. ( 0 [,] +oo ) ) -> 0 <_ ( O ` A ) ) |
|
10 | 5 7 8 9 | syl3anc | |- ( ph -> 0 <_ ( O ` A ) ) |