Metamath Proof Explorer


Theorem omege0

Description: If the outer measure of a set is greater than or equal to 0 . (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses omege0.o
|- ( ph -> O e. OutMeas )
omege0.x
|- X = U. dom O
omege0.a
|- ( ph -> A C_ X )
Assertion omege0
|- ( ph -> 0 <_ ( O ` A ) )

Proof

Step Hyp Ref Expression
1 omege0.o
 |-  ( ph -> O e. OutMeas )
2 omege0.x
 |-  X = U. dom O
3 omege0.a
 |-  ( ph -> A C_ X )
4 0xr
 |-  0 e. RR*
5 4 a1i
 |-  ( ph -> 0 e. RR* )
6 pnfxr
 |-  +oo e. RR*
7 6 a1i
 |-  ( ph -> +oo e. RR* )
8 1 2 3 omecl
 |-  ( ph -> ( O ` A ) e. ( 0 [,] +oo ) )
9 iccgelb
 |-  ( ( 0 e. RR* /\ +oo e. RR* /\ ( O ` A ) e. ( 0 [,] +oo ) ) -> 0 <_ ( O ` A ) )
10 5 7 8 9 syl3anc
 |-  ( ph -> 0 <_ ( O ` A ) )