Description: If the outer measure of a set is greater than or equal to 0 . (Contributed by Glauco Siliprandi, 24-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | omege0.o | ⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) | |
omege0.x | ⊢ 𝑋 = ∪ dom 𝑂 | ||
omege0.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) | ||
Assertion | omege0 | ⊢ ( 𝜑 → 0 ≤ ( 𝑂 ‘ 𝐴 ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | omege0.o | ⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) | |
2 | omege0.x | ⊢ 𝑋 = ∪ dom 𝑂 | |
3 | omege0.a | ⊢ ( 𝜑 → 𝐴 ⊆ 𝑋 ) | |
4 | 0xr | ⊢ 0 ∈ ℝ* | |
5 | 4 | a1i | ⊢ ( 𝜑 → 0 ∈ ℝ* ) |
6 | pnfxr | ⊢ +∞ ∈ ℝ* | |
7 | 6 | a1i | ⊢ ( 𝜑 → +∞ ∈ ℝ* ) |
8 | 1 2 3 | omecl | ⊢ ( 𝜑 → ( 𝑂 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
9 | iccgelb | ⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ( 𝑂 ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) → 0 ≤ ( 𝑂 ‘ 𝐴 ) ) | |
10 | 5 7 8 9 | syl3anc | ⊢ ( 𝜑 → 0 ≤ ( 𝑂 ‘ 𝐴 ) ) |