Metamath Proof Explorer


Theorem omege0

Description: If the outer measure of a set is greater than or equal to 0 . (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses omege0.o ( 𝜑𝑂 ∈ OutMeas )
omege0.x 𝑋 = dom 𝑂
omege0.a ( 𝜑𝐴𝑋 )
Assertion omege0 ( 𝜑 → 0 ≤ ( 𝑂𝐴 ) )

Proof

Step Hyp Ref Expression
1 omege0.o ( 𝜑𝑂 ∈ OutMeas )
2 omege0.x 𝑋 = dom 𝑂
3 omege0.a ( 𝜑𝐴𝑋 )
4 0xr 0 ∈ ℝ*
5 4 a1i ( 𝜑 → 0 ∈ ℝ* )
6 pnfxr +∞ ∈ ℝ*
7 6 a1i ( 𝜑 → +∞ ∈ ℝ* )
8 1 2 3 omecl ( 𝜑 → ( 𝑂𝐴 ) ∈ ( 0 [,] +∞ ) )
9 iccgelb ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ ( 𝑂𝐴 ) ∈ ( 0 [,] +∞ ) ) → 0 ≤ ( 𝑂𝐴 ) )
10 5 7 8 9 syl3anc ( 𝜑 → 0 ≤ ( 𝑂𝐴 ) )