Metamath Proof Explorer


Theorem caragencmpl

Description: A measure built with the Caratheodory's construction is complete. See Definition 112Df of Fremlin1 p. 19. This is Exercise 113Xa of Fremlin1 p. 21. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses caragencmpl.o
|- ( ph -> O e. OutMeas )
caragencmpl.x
|- X = U. dom O
caragencmpl.e
|- ( ph -> E C_ X )
caragencmpl.z
|- ( ph -> ( O ` E ) = 0 )
caragencmpl.s
|- S = ( CaraGen ` O )
Assertion caragencmpl
|- ( ph -> E e. S )

Proof

Step Hyp Ref Expression
1 caragencmpl.o
 |-  ( ph -> O e. OutMeas )
2 caragencmpl.x
 |-  X = U. dom O
3 caragencmpl.e
 |-  ( ph -> E C_ X )
4 caragencmpl.z
 |-  ( ph -> ( O ` E ) = 0 )
5 caragencmpl.s
 |-  S = ( CaraGen ` O )
6 1 2 unidmex
 |-  ( ph -> X e. _V )
7 6 3 ssexd
 |-  ( ph -> E e. _V )
8 elpwg
 |-  ( E e. _V -> ( E e. ~P X <-> E C_ X ) )
9 7 8 syl
 |-  ( ph -> ( E e. ~P X <-> E C_ X ) )
10 3 9 mpbird
 |-  ( ph -> E e. ~P X )
11 1 adantr
 |-  ( ( ph /\ a e. ~P X ) -> O e. OutMeas )
12 3 adantr
 |-  ( ( ph /\ a e. ~P X ) -> E C_ X )
13 4 adantr
 |-  ( ( ph /\ a e. ~P X ) -> ( O ` E ) = 0 )
14 inss2
 |-  ( a i^i E ) C_ E
15 14 a1i
 |-  ( ( ph /\ a e. ~P X ) -> ( a i^i E ) C_ E )
16 11 2 12 13 15 omess0
 |-  ( ( ph /\ a e. ~P X ) -> ( O ` ( a i^i E ) ) = 0 )
17 16 oveq1d
 |-  ( ( ph /\ a e. ~P X ) -> ( ( O ` ( a i^i E ) ) +e ( O ` ( a \ E ) ) ) = ( 0 +e ( O ` ( a \ E ) ) ) )
18 difssd
 |-  ( a e. ~P X -> ( a \ E ) C_ a )
19 elpwi
 |-  ( a e. ~P X -> a C_ X )
20 18 19 sstrd
 |-  ( a e. ~P X -> ( a \ E ) C_ X )
21 20 adantl
 |-  ( ( ph /\ a e. ~P X ) -> ( a \ E ) C_ X )
22 11 2 21 omexrcl
 |-  ( ( ph /\ a e. ~P X ) -> ( O ` ( a \ E ) ) e. RR* )
23 xaddid2
 |-  ( ( O ` ( a \ E ) ) e. RR* -> ( 0 +e ( O ` ( a \ E ) ) ) = ( O ` ( a \ E ) ) )
24 22 23 syl
 |-  ( ( ph /\ a e. ~P X ) -> ( 0 +e ( O ` ( a \ E ) ) ) = ( O ` ( a \ E ) ) )
25 17 24 eqtrd
 |-  ( ( ph /\ a e. ~P X ) -> ( ( O ` ( a i^i E ) ) +e ( O ` ( a \ E ) ) ) = ( O ` ( a \ E ) ) )
26 19 adantl
 |-  ( ( ph /\ a e. ~P X ) -> a C_ X )
27 18 adantl
 |-  ( ( ph /\ a e. ~P X ) -> ( a \ E ) C_ a )
28 11 2 26 27 omessle
 |-  ( ( ph /\ a e. ~P X ) -> ( O ` ( a \ E ) ) <_ ( O ` a ) )
29 25 28 eqbrtrd
 |-  ( ( ph /\ a e. ~P X ) -> ( ( O ` ( a i^i E ) ) +e ( O ` ( a \ E ) ) ) <_ ( O ` a ) )
30 1 2 5 10 29 caragenel2d
 |-  ( ph -> E e. S )