Step |
Hyp |
Ref |
Expression |
1 |
|
caragencmpl.o |
|- ( ph -> O e. OutMeas ) |
2 |
|
caragencmpl.x |
|- X = U. dom O |
3 |
|
caragencmpl.e |
|- ( ph -> E C_ X ) |
4 |
|
caragencmpl.z |
|- ( ph -> ( O ` E ) = 0 ) |
5 |
|
caragencmpl.s |
|- S = ( CaraGen ` O ) |
6 |
1 2
|
unidmex |
|- ( ph -> X e. _V ) |
7 |
6 3
|
ssexd |
|- ( ph -> E e. _V ) |
8 |
|
elpwg |
|- ( E e. _V -> ( E e. ~P X <-> E C_ X ) ) |
9 |
7 8
|
syl |
|- ( ph -> ( E e. ~P X <-> E C_ X ) ) |
10 |
3 9
|
mpbird |
|- ( ph -> E e. ~P X ) |
11 |
1
|
adantr |
|- ( ( ph /\ a e. ~P X ) -> O e. OutMeas ) |
12 |
3
|
adantr |
|- ( ( ph /\ a e. ~P X ) -> E C_ X ) |
13 |
4
|
adantr |
|- ( ( ph /\ a e. ~P X ) -> ( O ` E ) = 0 ) |
14 |
|
inss2 |
|- ( a i^i E ) C_ E |
15 |
14
|
a1i |
|- ( ( ph /\ a e. ~P X ) -> ( a i^i E ) C_ E ) |
16 |
11 2 12 13 15
|
omess0 |
|- ( ( ph /\ a e. ~P X ) -> ( O ` ( a i^i E ) ) = 0 ) |
17 |
16
|
oveq1d |
|- ( ( ph /\ a e. ~P X ) -> ( ( O ` ( a i^i E ) ) +e ( O ` ( a \ E ) ) ) = ( 0 +e ( O ` ( a \ E ) ) ) ) |
18 |
|
difssd |
|- ( a e. ~P X -> ( a \ E ) C_ a ) |
19 |
|
elpwi |
|- ( a e. ~P X -> a C_ X ) |
20 |
18 19
|
sstrd |
|- ( a e. ~P X -> ( a \ E ) C_ X ) |
21 |
20
|
adantl |
|- ( ( ph /\ a e. ~P X ) -> ( a \ E ) C_ X ) |
22 |
11 2 21
|
omexrcl |
|- ( ( ph /\ a e. ~P X ) -> ( O ` ( a \ E ) ) e. RR* ) |
23 |
|
xaddid2 |
|- ( ( O ` ( a \ E ) ) e. RR* -> ( 0 +e ( O ` ( a \ E ) ) ) = ( O ` ( a \ E ) ) ) |
24 |
22 23
|
syl |
|- ( ( ph /\ a e. ~P X ) -> ( 0 +e ( O ` ( a \ E ) ) ) = ( O ` ( a \ E ) ) ) |
25 |
17 24
|
eqtrd |
|- ( ( ph /\ a e. ~P X ) -> ( ( O ` ( a i^i E ) ) +e ( O ` ( a \ E ) ) ) = ( O ` ( a \ E ) ) ) |
26 |
19
|
adantl |
|- ( ( ph /\ a e. ~P X ) -> a C_ X ) |
27 |
18
|
adantl |
|- ( ( ph /\ a e. ~P X ) -> ( a \ E ) C_ a ) |
28 |
11 2 26 27
|
omessle |
|- ( ( ph /\ a e. ~P X ) -> ( O ` ( a \ E ) ) <_ ( O ` a ) ) |
29 |
25 28
|
eqbrtrd |
|- ( ( ph /\ a e. ~P X ) -> ( ( O ` ( a i^i E ) ) +e ( O ` ( a \ E ) ) ) <_ ( O ` a ) ) |
30 |
1 2 5 10 29
|
caragenel2d |
|- ( ph -> E e. S ) |