| Step |
Hyp |
Ref |
Expression |
| 1 |
|
caragencmpl.o |
|- ( ph -> O e. OutMeas ) |
| 2 |
|
caragencmpl.x |
|- X = U. dom O |
| 3 |
|
caragencmpl.e |
|- ( ph -> E C_ X ) |
| 4 |
|
caragencmpl.z |
|- ( ph -> ( O ` E ) = 0 ) |
| 5 |
|
caragencmpl.s |
|- S = ( CaraGen ` O ) |
| 6 |
1 2
|
unidmex |
|- ( ph -> X e. _V ) |
| 7 |
6 3
|
ssexd |
|- ( ph -> E e. _V ) |
| 8 |
|
elpwg |
|- ( E e. _V -> ( E e. ~P X <-> E C_ X ) ) |
| 9 |
7 8
|
syl |
|- ( ph -> ( E e. ~P X <-> E C_ X ) ) |
| 10 |
3 9
|
mpbird |
|- ( ph -> E e. ~P X ) |
| 11 |
1
|
adantr |
|- ( ( ph /\ a e. ~P X ) -> O e. OutMeas ) |
| 12 |
3
|
adantr |
|- ( ( ph /\ a e. ~P X ) -> E C_ X ) |
| 13 |
4
|
adantr |
|- ( ( ph /\ a e. ~P X ) -> ( O ` E ) = 0 ) |
| 14 |
|
inss2 |
|- ( a i^i E ) C_ E |
| 15 |
14
|
a1i |
|- ( ( ph /\ a e. ~P X ) -> ( a i^i E ) C_ E ) |
| 16 |
11 2 12 13 15
|
omess0 |
|- ( ( ph /\ a e. ~P X ) -> ( O ` ( a i^i E ) ) = 0 ) |
| 17 |
16
|
oveq1d |
|- ( ( ph /\ a e. ~P X ) -> ( ( O ` ( a i^i E ) ) +e ( O ` ( a \ E ) ) ) = ( 0 +e ( O ` ( a \ E ) ) ) ) |
| 18 |
|
difssd |
|- ( a e. ~P X -> ( a \ E ) C_ a ) |
| 19 |
|
elpwi |
|- ( a e. ~P X -> a C_ X ) |
| 20 |
18 19
|
sstrd |
|- ( a e. ~P X -> ( a \ E ) C_ X ) |
| 21 |
20
|
adantl |
|- ( ( ph /\ a e. ~P X ) -> ( a \ E ) C_ X ) |
| 22 |
11 2 21
|
omexrcl |
|- ( ( ph /\ a e. ~P X ) -> ( O ` ( a \ E ) ) e. RR* ) |
| 23 |
|
xaddlid |
|- ( ( O ` ( a \ E ) ) e. RR* -> ( 0 +e ( O ` ( a \ E ) ) ) = ( O ` ( a \ E ) ) ) |
| 24 |
22 23
|
syl |
|- ( ( ph /\ a e. ~P X ) -> ( 0 +e ( O ` ( a \ E ) ) ) = ( O ` ( a \ E ) ) ) |
| 25 |
17 24
|
eqtrd |
|- ( ( ph /\ a e. ~P X ) -> ( ( O ` ( a i^i E ) ) +e ( O ` ( a \ E ) ) ) = ( O ` ( a \ E ) ) ) |
| 26 |
19
|
adantl |
|- ( ( ph /\ a e. ~P X ) -> a C_ X ) |
| 27 |
18
|
adantl |
|- ( ( ph /\ a e. ~P X ) -> ( a \ E ) C_ a ) |
| 28 |
11 2 26 27
|
omessle |
|- ( ( ph /\ a e. ~P X ) -> ( O ` ( a \ E ) ) <_ ( O ` a ) ) |
| 29 |
25 28
|
eqbrtrd |
|- ( ( ph /\ a e. ~P X ) -> ( ( O ` ( a i^i E ) ) +e ( O ` ( a \ E ) ) ) <_ ( O ` a ) ) |
| 30 |
1 2 5 10 29
|
caragenel2d |
|- ( ph -> E e. S ) |