| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caragencmpl.o |  |-  ( ph -> O e. OutMeas ) | 
						
							| 2 |  | caragencmpl.x |  |-  X = U. dom O | 
						
							| 3 |  | caragencmpl.e |  |-  ( ph -> E C_ X ) | 
						
							| 4 |  | caragencmpl.z |  |-  ( ph -> ( O ` E ) = 0 ) | 
						
							| 5 |  | caragencmpl.s |  |-  S = ( CaraGen ` O ) | 
						
							| 6 | 1 2 | unidmex |  |-  ( ph -> X e. _V ) | 
						
							| 7 | 6 3 | ssexd |  |-  ( ph -> E e. _V ) | 
						
							| 8 |  | elpwg |  |-  ( E e. _V -> ( E e. ~P X <-> E C_ X ) ) | 
						
							| 9 | 7 8 | syl |  |-  ( ph -> ( E e. ~P X <-> E C_ X ) ) | 
						
							| 10 | 3 9 | mpbird |  |-  ( ph -> E e. ~P X ) | 
						
							| 11 | 1 | adantr |  |-  ( ( ph /\ a e. ~P X ) -> O e. OutMeas ) | 
						
							| 12 | 3 | adantr |  |-  ( ( ph /\ a e. ~P X ) -> E C_ X ) | 
						
							| 13 | 4 | adantr |  |-  ( ( ph /\ a e. ~P X ) -> ( O ` E ) = 0 ) | 
						
							| 14 |  | inss2 |  |-  ( a i^i E ) C_ E | 
						
							| 15 | 14 | a1i |  |-  ( ( ph /\ a e. ~P X ) -> ( a i^i E ) C_ E ) | 
						
							| 16 | 11 2 12 13 15 | omess0 |  |-  ( ( ph /\ a e. ~P X ) -> ( O ` ( a i^i E ) ) = 0 ) | 
						
							| 17 | 16 | oveq1d |  |-  ( ( ph /\ a e. ~P X ) -> ( ( O ` ( a i^i E ) ) +e ( O ` ( a \ E ) ) ) = ( 0 +e ( O ` ( a \ E ) ) ) ) | 
						
							| 18 |  | difssd |  |-  ( a e. ~P X -> ( a \ E ) C_ a ) | 
						
							| 19 |  | elpwi |  |-  ( a e. ~P X -> a C_ X ) | 
						
							| 20 | 18 19 | sstrd |  |-  ( a e. ~P X -> ( a \ E ) C_ X ) | 
						
							| 21 | 20 | adantl |  |-  ( ( ph /\ a e. ~P X ) -> ( a \ E ) C_ X ) | 
						
							| 22 | 11 2 21 | omexrcl |  |-  ( ( ph /\ a e. ~P X ) -> ( O ` ( a \ E ) ) e. RR* ) | 
						
							| 23 |  | xaddlid |  |-  ( ( O ` ( a \ E ) ) e. RR* -> ( 0 +e ( O ` ( a \ E ) ) ) = ( O ` ( a \ E ) ) ) | 
						
							| 24 | 22 23 | syl |  |-  ( ( ph /\ a e. ~P X ) -> ( 0 +e ( O ` ( a \ E ) ) ) = ( O ` ( a \ E ) ) ) | 
						
							| 25 | 17 24 | eqtrd |  |-  ( ( ph /\ a e. ~P X ) -> ( ( O ` ( a i^i E ) ) +e ( O ` ( a \ E ) ) ) = ( O ` ( a \ E ) ) ) | 
						
							| 26 | 19 | adantl |  |-  ( ( ph /\ a e. ~P X ) -> a C_ X ) | 
						
							| 27 | 18 | adantl |  |-  ( ( ph /\ a e. ~P X ) -> ( a \ E ) C_ a ) | 
						
							| 28 | 11 2 26 27 | omessle |  |-  ( ( ph /\ a e. ~P X ) -> ( O ` ( a \ E ) ) <_ ( O ` a ) ) | 
						
							| 29 | 25 28 | eqbrtrd |  |-  ( ( ph /\ a e. ~P X ) -> ( ( O ` ( a i^i E ) ) +e ( O ` ( a \ E ) ) ) <_ ( O ` a ) ) | 
						
							| 30 | 1 2 5 10 29 | caragenel2d |  |-  ( ph -> E e. S ) |