Metamath Proof Explorer


Theorem caragencmpl

Description: A measure built with the Caratheodory's construction is complete. See Definition 112Df of Fremlin1 p. 19. This is Exercise 113Xa of Fremlin1 p. 21. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses caragencmpl.o φ O OutMeas
caragencmpl.x X = dom O
caragencmpl.e φ E X
caragencmpl.z φ O E = 0
caragencmpl.s S = CaraGen O
Assertion caragencmpl φ E S

Proof

Step Hyp Ref Expression
1 caragencmpl.o φ O OutMeas
2 caragencmpl.x X = dom O
3 caragencmpl.e φ E X
4 caragencmpl.z φ O E = 0
5 caragencmpl.s S = CaraGen O
6 1 2 unidmex φ X V
7 6 3 ssexd φ E V
8 elpwg E V E 𝒫 X E X
9 7 8 syl φ E 𝒫 X E X
10 3 9 mpbird φ E 𝒫 X
11 1 adantr φ a 𝒫 X O OutMeas
12 3 adantr φ a 𝒫 X E X
13 4 adantr φ a 𝒫 X O E = 0
14 inss2 a E E
15 14 a1i φ a 𝒫 X a E E
16 11 2 12 13 15 omess0 φ a 𝒫 X O a E = 0
17 16 oveq1d φ a 𝒫 X O a E + 𝑒 O a E = 0 + 𝑒 O a E
18 difssd a 𝒫 X a E a
19 elpwi a 𝒫 X a X
20 18 19 sstrd a 𝒫 X a E X
21 20 adantl φ a 𝒫 X a E X
22 11 2 21 omexrcl φ a 𝒫 X O a E *
23 xaddid2 O a E * 0 + 𝑒 O a E = O a E
24 22 23 syl φ a 𝒫 X 0 + 𝑒 O a E = O a E
25 17 24 eqtrd φ a 𝒫 X O a E + 𝑒 O a E = O a E
26 19 adantl φ a 𝒫 X a X
27 18 adantl φ a 𝒫 X a E a
28 11 2 26 27 omessle φ a 𝒫 X O a E O a
29 25 28 eqbrtrd φ a 𝒫 X O a E + 𝑒 O a E O a
30 1 2 5 10 29 caragenel2d φ E S