Step |
Hyp |
Ref |
Expression |
1 |
|
caragencmpl.o |
⊢ ( 𝜑 → 𝑂 ∈ OutMeas ) |
2 |
|
caragencmpl.x |
⊢ 𝑋 = ∪ dom 𝑂 |
3 |
|
caragencmpl.e |
⊢ ( 𝜑 → 𝐸 ⊆ 𝑋 ) |
4 |
|
caragencmpl.z |
⊢ ( 𝜑 → ( 𝑂 ‘ 𝐸 ) = 0 ) |
5 |
|
caragencmpl.s |
⊢ 𝑆 = ( CaraGen ‘ 𝑂 ) |
6 |
1 2
|
unidmex |
⊢ ( 𝜑 → 𝑋 ∈ V ) |
7 |
6 3
|
ssexd |
⊢ ( 𝜑 → 𝐸 ∈ V ) |
8 |
|
elpwg |
⊢ ( 𝐸 ∈ V → ( 𝐸 ∈ 𝒫 𝑋 ↔ 𝐸 ⊆ 𝑋 ) ) |
9 |
7 8
|
syl |
⊢ ( 𝜑 → ( 𝐸 ∈ 𝒫 𝑋 ↔ 𝐸 ⊆ 𝑋 ) ) |
10 |
3 9
|
mpbird |
⊢ ( 𝜑 → 𝐸 ∈ 𝒫 𝑋 ) |
11 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → 𝑂 ∈ OutMeas ) |
12 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → 𝐸 ⊆ 𝑋 ) |
13 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( 𝑂 ‘ 𝐸 ) = 0 ) |
14 |
|
inss2 |
⊢ ( 𝑎 ∩ 𝐸 ) ⊆ 𝐸 |
15 |
14
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( 𝑎 ∩ 𝐸 ) ⊆ 𝐸 ) |
16 |
11 2 12 13 15
|
omess0 |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( 𝑂 ‘ ( 𝑎 ∩ 𝐸 ) ) = 0 ) |
17 |
16
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( ( 𝑂 ‘ ( 𝑎 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ) = ( 0 +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ) ) |
18 |
|
difssd |
⊢ ( 𝑎 ∈ 𝒫 𝑋 → ( 𝑎 ∖ 𝐸 ) ⊆ 𝑎 ) |
19 |
|
elpwi |
⊢ ( 𝑎 ∈ 𝒫 𝑋 → 𝑎 ⊆ 𝑋 ) |
20 |
18 19
|
sstrd |
⊢ ( 𝑎 ∈ 𝒫 𝑋 → ( 𝑎 ∖ 𝐸 ) ⊆ 𝑋 ) |
21 |
20
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( 𝑎 ∖ 𝐸 ) ⊆ 𝑋 ) |
22 |
11 2 21
|
omexrcl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ∈ ℝ* ) |
23 |
|
xaddid2 |
⊢ ( ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ∈ ℝ* → ( 0 +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ) = ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ) |
24 |
22 23
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( 0 +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ) = ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ) |
25 |
17 24
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( ( 𝑂 ‘ ( 𝑎 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ) = ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ) |
26 |
19
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → 𝑎 ⊆ 𝑋 ) |
27 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( 𝑎 ∖ 𝐸 ) ⊆ 𝑎 ) |
28 |
11 2 26 27
|
omessle |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ≤ ( 𝑂 ‘ 𝑎 ) ) |
29 |
25 28
|
eqbrtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 𝑋 ) → ( ( 𝑂 ‘ ( 𝑎 ∩ 𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎 ∖ 𝐸 ) ) ) ≤ ( 𝑂 ‘ 𝑎 ) ) |
30 |
1 2 5 10 29
|
caragenel2d |
⊢ ( 𝜑 → 𝐸 ∈ 𝑆 ) |