| Step | Hyp | Ref | Expression | 
						
							| 1 |  | caragencmpl.o | ⊢ ( 𝜑  →  𝑂  ∈  OutMeas ) | 
						
							| 2 |  | caragencmpl.x | ⊢ 𝑋  =  ∪  dom  𝑂 | 
						
							| 3 |  | caragencmpl.e | ⊢ ( 𝜑  →  𝐸  ⊆  𝑋 ) | 
						
							| 4 |  | caragencmpl.z | ⊢ ( 𝜑  →  ( 𝑂 ‘ 𝐸 )  =  0 ) | 
						
							| 5 |  | caragencmpl.s | ⊢ 𝑆  =  ( CaraGen ‘ 𝑂 ) | 
						
							| 6 | 1 2 | unidmex | ⊢ ( 𝜑  →  𝑋  ∈  V ) | 
						
							| 7 | 6 3 | ssexd | ⊢ ( 𝜑  →  𝐸  ∈  V ) | 
						
							| 8 |  | elpwg | ⊢ ( 𝐸  ∈  V  →  ( 𝐸  ∈  𝒫  𝑋  ↔  𝐸  ⊆  𝑋 ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝜑  →  ( 𝐸  ∈  𝒫  𝑋  ↔  𝐸  ⊆  𝑋 ) ) | 
						
							| 10 | 3 9 | mpbird | ⊢ ( 𝜑  →  𝐸  ∈  𝒫  𝑋 ) | 
						
							| 11 | 1 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  𝑋 )  →  𝑂  ∈  OutMeas ) | 
						
							| 12 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  𝑋 )  →  𝐸  ⊆  𝑋 ) | 
						
							| 13 | 4 | adantr | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  𝑋 )  →  ( 𝑂 ‘ 𝐸 )  =  0 ) | 
						
							| 14 |  | inss2 | ⊢ ( 𝑎  ∩  𝐸 )  ⊆  𝐸 | 
						
							| 15 | 14 | a1i | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  𝑋 )  →  ( 𝑎  ∩  𝐸 )  ⊆  𝐸 ) | 
						
							| 16 | 11 2 12 13 15 | omess0 | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  𝑋 )  →  ( 𝑂 ‘ ( 𝑎  ∩  𝐸 ) )  =  0 ) | 
						
							| 17 | 16 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  𝑋 )  →  ( ( 𝑂 ‘ ( 𝑎  ∩  𝐸 ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  𝐸 ) ) )  =  ( 0  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  𝐸 ) ) ) ) | 
						
							| 18 |  | difssd | ⊢ ( 𝑎  ∈  𝒫  𝑋  →  ( 𝑎  ∖  𝐸 )  ⊆  𝑎 ) | 
						
							| 19 |  | elpwi | ⊢ ( 𝑎  ∈  𝒫  𝑋  →  𝑎  ⊆  𝑋 ) | 
						
							| 20 | 18 19 | sstrd | ⊢ ( 𝑎  ∈  𝒫  𝑋  →  ( 𝑎  ∖  𝐸 )  ⊆  𝑋 ) | 
						
							| 21 | 20 | adantl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  𝑋 )  →  ( 𝑎  ∖  𝐸 )  ⊆  𝑋 ) | 
						
							| 22 | 11 2 21 | omexrcl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  𝑋 )  →  ( 𝑂 ‘ ( 𝑎  ∖  𝐸 ) )  ∈  ℝ* ) | 
						
							| 23 |  | xaddlid | ⊢ ( ( 𝑂 ‘ ( 𝑎  ∖  𝐸 ) )  ∈  ℝ*  →  ( 0  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  𝐸 ) ) )  =  ( 𝑂 ‘ ( 𝑎  ∖  𝐸 ) ) ) | 
						
							| 24 | 22 23 | syl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  𝑋 )  →  ( 0  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  𝐸 ) ) )  =  ( 𝑂 ‘ ( 𝑎  ∖  𝐸 ) ) ) | 
						
							| 25 | 17 24 | eqtrd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  𝑋 )  →  ( ( 𝑂 ‘ ( 𝑎  ∩  𝐸 ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  𝐸 ) ) )  =  ( 𝑂 ‘ ( 𝑎  ∖  𝐸 ) ) ) | 
						
							| 26 | 19 | adantl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  𝑋 )  →  𝑎  ⊆  𝑋 ) | 
						
							| 27 | 18 | adantl | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  𝑋 )  →  ( 𝑎  ∖  𝐸 )  ⊆  𝑎 ) | 
						
							| 28 | 11 2 26 27 | omessle | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  𝑋 )  →  ( 𝑂 ‘ ( 𝑎  ∖  𝐸 ) )  ≤  ( 𝑂 ‘ 𝑎 ) ) | 
						
							| 29 | 25 28 | eqbrtrd | ⊢ ( ( 𝜑  ∧  𝑎  ∈  𝒫  𝑋 )  →  ( ( 𝑂 ‘ ( 𝑎  ∩  𝐸 ) )  +𝑒  ( 𝑂 ‘ ( 𝑎  ∖  𝐸 ) ) )  ≤  ( 𝑂 ‘ 𝑎 ) ) | 
						
							| 30 | 1 2 5 10 29 | caragenel2d | ⊢ ( 𝜑  →  𝐸  ∈  𝑆 ) |