Metamath Proof Explorer


Theorem caragencmpl

Description: A measure built with the Caratheodory's construction is complete. See Definition 112Df of Fremlin1 p. 19. This is Exercise 113Xa of Fremlin1 p. 21. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses caragencmpl.o ( 𝜑𝑂 ∈ OutMeas )
caragencmpl.x 𝑋 = dom 𝑂
caragencmpl.e ( 𝜑𝐸𝑋 )
caragencmpl.z ( 𝜑 → ( 𝑂𝐸 ) = 0 )
caragencmpl.s 𝑆 = ( CaraGen ‘ 𝑂 )
Assertion caragencmpl ( 𝜑𝐸𝑆 )

Proof

Step Hyp Ref Expression
1 caragencmpl.o ( 𝜑𝑂 ∈ OutMeas )
2 caragencmpl.x 𝑋 = dom 𝑂
3 caragencmpl.e ( 𝜑𝐸𝑋 )
4 caragencmpl.z ( 𝜑 → ( 𝑂𝐸 ) = 0 )
5 caragencmpl.s 𝑆 = ( CaraGen ‘ 𝑂 )
6 1 2 unidmex ( 𝜑𝑋 ∈ V )
7 6 3 ssexd ( 𝜑𝐸 ∈ V )
8 elpwg ( 𝐸 ∈ V → ( 𝐸 ∈ 𝒫 𝑋𝐸𝑋 ) )
9 7 8 syl ( 𝜑 → ( 𝐸 ∈ 𝒫 𝑋𝐸𝑋 ) )
10 3 9 mpbird ( 𝜑𝐸 ∈ 𝒫 𝑋 )
11 1 adantr ( ( 𝜑𝑎 ∈ 𝒫 𝑋 ) → 𝑂 ∈ OutMeas )
12 3 adantr ( ( 𝜑𝑎 ∈ 𝒫 𝑋 ) → 𝐸𝑋 )
13 4 adantr ( ( 𝜑𝑎 ∈ 𝒫 𝑋 ) → ( 𝑂𝐸 ) = 0 )
14 inss2 ( 𝑎𝐸 ) ⊆ 𝐸
15 14 a1i ( ( 𝜑𝑎 ∈ 𝒫 𝑋 ) → ( 𝑎𝐸 ) ⊆ 𝐸 )
16 11 2 12 13 15 omess0 ( ( 𝜑𝑎 ∈ 𝒫 𝑋 ) → ( 𝑂 ‘ ( 𝑎𝐸 ) ) = 0 )
17 16 oveq1d ( ( 𝜑𝑎 ∈ 𝒫 𝑋 ) → ( ( 𝑂 ‘ ( 𝑎𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝐸 ) ) ) = ( 0 +𝑒 ( 𝑂 ‘ ( 𝑎𝐸 ) ) ) )
18 difssd ( 𝑎 ∈ 𝒫 𝑋 → ( 𝑎𝐸 ) ⊆ 𝑎 )
19 elpwi ( 𝑎 ∈ 𝒫 𝑋𝑎𝑋 )
20 18 19 sstrd ( 𝑎 ∈ 𝒫 𝑋 → ( 𝑎𝐸 ) ⊆ 𝑋 )
21 20 adantl ( ( 𝜑𝑎 ∈ 𝒫 𝑋 ) → ( 𝑎𝐸 ) ⊆ 𝑋 )
22 11 2 21 omexrcl ( ( 𝜑𝑎 ∈ 𝒫 𝑋 ) → ( 𝑂 ‘ ( 𝑎𝐸 ) ) ∈ ℝ* )
23 xaddid2 ( ( 𝑂 ‘ ( 𝑎𝐸 ) ) ∈ ℝ* → ( 0 +𝑒 ( 𝑂 ‘ ( 𝑎𝐸 ) ) ) = ( 𝑂 ‘ ( 𝑎𝐸 ) ) )
24 22 23 syl ( ( 𝜑𝑎 ∈ 𝒫 𝑋 ) → ( 0 +𝑒 ( 𝑂 ‘ ( 𝑎𝐸 ) ) ) = ( 𝑂 ‘ ( 𝑎𝐸 ) ) )
25 17 24 eqtrd ( ( 𝜑𝑎 ∈ 𝒫 𝑋 ) → ( ( 𝑂 ‘ ( 𝑎𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝐸 ) ) ) = ( 𝑂 ‘ ( 𝑎𝐸 ) ) )
26 19 adantl ( ( 𝜑𝑎 ∈ 𝒫 𝑋 ) → 𝑎𝑋 )
27 18 adantl ( ( 𝜑𝑎 ∈ 𝒫 𝑋 ) → ( 𝑎𝐸 ) ⊆ 𝑎 )
28 11 2 26 27 omessle ( ( 𝜑𝑎 ∈ 𝒫 𝑋 ) → ( 𝑂 ‘ ( 𝑎𝐸 ) ) ≤ ( 𝑂𝑎 ) )
29 25 28 eqbrtrd ( ( 𝜑𝑎 ∈ 𝒫 𝑋 ) → ( ( 𝑂 ‘ ( 𝑎𝐸 ) ) +𝑒 ( 𝑂 ‘ ( 𝑎𝐸 ) ) ) ≤ ( 𝑂𝑎 ) )
30 1 2 5 10 29 caragenel2d ( 𝜑𝐸𝑆 )