Step |
Hyp |
Ref |
Expression |
1 |
|
isomennd.x |
|- ( ph -> X e. V ) |
2 |
|
isomennd.o |
|- ( ph -> O : ~P X --> ( 0 [,] +oo ) ) |
3 |
|
isomennd.o0 |
|- ( ph -> ( O ` (/) ) = 0 ) |
4 |
|
isomennd.le |
|- ( ( ph /\ x C_ X /\ y C_ x ) -> ( O ` y ) <_ ( O ` x ) ) |
5 |
|
isomennd.sa |
|- ( ( ph /\ a : NN --> ~P X ) -> ( O ` U_ n e. NN ( a ` n ) ) <_ ( sum^ ` ( n e. NN |-> ( O ` ( a ` n ) ) ) ) ) |
6 |
|
id |
|- ( O : ~P X --> ( 0 [,] +oo ) -> O : ~P X --> ( 0 [,] +oo ) ) |
7 |
|
fdm |
|- ( O : ~P X --> ( 0 [,] +oo ) -> dom O = ~P X ) |
8 |
7
|
feq2d |
|- ( O : ~P X --> ( 0 [,] +oo ) -> ( O : dom O --> ( 0 [,] +oo ) <-> O : ~P X --> ( 0 [,] +oo ) ) ) |
9 |
6 8
|
mpbird |
|- ( O : ~P X --> ( 0 [,] +oo ) -> O : dom O --> ( 0 [,] +oo ) ) |
10 |
2 9
|
syl |
|- ( ph -> O : dom O --> ( 0 [,] +oo ) ) |
11 |
|
unipw |
|- U. ~P X = X |
12 |
11
|
pweqi |
|- ~P U. ~P X = ~P X |
13 |
12
|
a1i |
|- ( ph -> ~P U. ~P X = ~P X ) |
14 |
2 7
|
syl |
|- ( ph -> dom O = ~P X ) |
15 |
14
|
unieqd |
|- ( ph -> U. dom O = U. ~P X ) |
16 |
15
|
pweqd |
|- ( ph -> ~P U. dom O = ~P U. ~P X ) |
17 |
13 16 14
|
3eqtr4rd |
|- ( ph -> dom O = ~P U. dom O ) |
18 |
10 17 3
|
jca31 |
|- ( ph -> ( ( O : dom O --> ( 0 [,] +oo ) /\ dom O = ~P U. dom O ) /\ ( O ` (/) ) = 0 ) ) |
19 |
|
simpl |
|- ( ( ph /\ ( x e. ~P U. dom O /\ y e. ~P x ) ) -> ph ) |
20 |
|
simpr |
|- ( ( ph /\ x e. ~P U. dom O ) -> x e. ~P U. dom O ) |
21 |
16 13
|
eqtrd |
|- ( ph -> ~P U. dom O = ~P X ) |
22 |
21
|
adantr |
|- ( ( ph /\ x e. ~P U. dom O ) -> ~P U. dom O = ~P X ) |
23 |
20 22
|
eleqtrd |
|- ( ( ph /\ x e. ~P U. dom O ) -> x e. ~P X ) |
24 |
|
elpwi |
|- ( x e. ~P X -> x C_ X ) |
25 |
23 24
|
syl |
|- ( ( ph /\ x e. ~P U. dom O ) -> x C_ X ) |
26 |
25
|
adantrr |
|- ( ( ph /\ ( x e. ~P U. dom O /\ y e. ~P x ) ) -> x C_ X ) |
27 |
|
elpwi |
|- ( y e. ~P x -> y C_ x ) |
28 |
27
|
adantl |
|- ( ( x e. ~P U. dom O /\ y e. ~P x ) -> y C_ x ) |
29 |
28
|
adantl |
|- ( ( ph /\ ( x e. ~P U. dom O /\ y e. ~P x ) ) -> y C_ x ) |
30 |
19 26 29 4
|
syl3anc |
|- ( ( ph /\ ( x e. ~P U. dom O /\ y e. ~P x ) ) -> ( O ` y ) <_ ( O ` x ) ) |
31 |
30
|
ralrimivva |
|- ( ph -> A. x e. ~P U. dom O A. y e. ~P x ( O ` y ) <_ ( O ` x ) ) |
32 |
|
0le0 |
|- 0 <_ 0 |
33 |
32
|
a1i |
|- ( ( ph /\ x = (/) ) -> 0 <_ 0 ) |
34 |
|
unieq |
|- ( x = (/) -> U. x = U. (/) ) |
35 |
|
uni0 |
|- U. (/) = (/) |
36 |
35
|
a1i |
|- ( x = (/) -> U. (/) = (/) ) |
37 |
34 36
|
eqtrd |
|- ( x = (/) -> U. x = (/) ) |
38 |
37
|
fveq2d |
|- ( x = (/) -> ( O ` U. x ) = ( O ` (/) ) ) |
39 |
38
|
adantl |
|- ( ( ph /\ x = (/) ) -> ( O ` U. x ) = ( O ` (/) ) ) |
40 |
3
|
adantr |
|- ( ( ph /\ x = (/) ) -> ( O ` (/) ) = 0 ) |
41 |
39 40
|
eqtrd |
|- ( ( ph /\ x = (/) ) -> ( O ` U. x ) = 0 ) |
42 |
|
reseq2 |
|- ( x = (/) -> ( O |` x ) = ( O |` (/) ) ) |
43 |
|
res0 |
|- ( O |` (/) ) = (/) |
44 |
43
|
a1i |
|- ( x = (/) -> ( O |` (/) ) = (/) ) |
45 |
42 44
|
eqtrd |
|- ( x = (/) -> ( O |` x ) = (/) ) |
46 |
45
|
fveq2d |
|- ( x = (/) -> ( sum^ ` ( O |` x ) ) = ( sum^ ` (/) ) ) |
47 |
|
sge00 |
|- ( sum^ ` (/) ) = 0 |
48 |
47
|
a1i |
|- ( x = (/) -> ( sum^ ` (/) ) = 0 ) |
49 |
46 48
|
eqtrd |
|- ( x = (/) -> ( sum^ ` ( O |` x ) ) = 0 ) |
50 |
49
|
adantl |
|- ( ( ph /\ x = (/) ) -> ( sum^ ` ( O |` x ) ) = 0 ) |
51 |
41 50
|
breq12d |
|- ( ( ph /\ x = (/) ) -> ( ( O ` U. x ) <_ ( sum^ ` ( O |` x ) ) <-> 0 <_ 0 ) ) |
52 |
33 51
|
mpbird |
|- ( ( ph /\ x = (/) ) -> ( O ` U. x ) <_ ( sum^ ` ( O |` x ) ) ) |
53 |
52
|
ad4ant14 |
|- ( ( ( ( ph /\ x e. ~P dom O ) /\ x ~<_ _om ) /\ x = (/) ) -> ( O ` U. x ) <_ ( sum^ ` ( O |` x ) ) ) |
54 |
|
simpl |
|- ( ( ( ( ph /\ x e. ~P dom O ) /\ x ~<_ _om ) /\ -. x = (/) ) -> ( ( ph /\ x e. ~P dom O ) /\ x ~<_ _om ) ) |
55 |
|
neqne |
|- ( -. x = (/) -> x =/= (/) ) |
56 |
55
|
adantl |
|- ( ( ( ( ph /\ x e. ~P dom O ) /\ x ~<_ _om ) /\ -. x = (/) ) -> x =/= (/) ) |
57 |
|
ssnnf1octb |
|- ( ( x ~<_ _om /\ x =/= (/) ) -> E. f ( dom f C_ NN /\ f : dom f -1-1-onto-> x ) ) |
58 |
57
|
adantll |
|- ( ( ( ( ph /\ x e. ~P dom O ) /\ x ~<_ _om ) /\ x =/= (/) ) -> E. f ( dom f C_ NN /\ f : dom f -1-1-onto-> x ) ) |
59 |
2
|
ad2antrr |
|- ( ( ( ph /\ x e. ~P dom O ) /\ ( dom f C_ NN /\ f : dom f -1-1-onto-> x ) ) -> O : ~P X --> ( 0 [,] +oo ) ) |
60 |
3
|
ad2antrr |
|- ( ( ( ph /\ x e. ~P dom O ) /\ ( dom f C_ NN /\ f : dom f -1-1-onto-> x ) ) -> ( O ` (/) ) = 0 ) |
61 |
|
simpr |
|- ( ( ph /\ x e. ~P dom O ) -> x e. ~P dom O ) |
62 |
14
|
pweqd |
|- ( ph -> ~P dom O = ~P ~P X ) |
63 |
62
|
adantr |
|- ( ( ph /\ x e. ~P dom O ) -> ~P dom O = ~P ~P X ) |
64 |
61 63
|
eleqtrd |
|- ( ( ph /\ x e. ~P dom O ) -> x e. ~P ~P X ) |
65 |
|
elpwi |
|- ( x e. ~P ~P X -> x C_ ~P X ) |
66 |
64 65
|
syl |
|- ( ( ph /\ x e. ~P dom O ) -> x C_ ~P X ) |
67 |
66
|
adantr |
|- ( ( ( ph /\ x e. ~P dom O ) /\ ( dom f C_ NN /\ f : dom f -1-1-onto-> x ) ) -> x C_ ~P X ) |
68 |
|
simpl |
|- ( ( ph /\ x e. ~P dom O ) -> ph ) |
69 |
68 5
|
sylan |
|- ( ( ( ph /\ x e. ~P dom O ) /\ a : NN --> ~P X ) -> ( O ` U_ n e. NN ( a ` n ) ) <_ ( sum^ ` ( n e. NN |-> ( O ` ( a ` n ) ) ) ) ) |
70 |
69
|
adantlr |
|- ( ( ( ( ph /\ x e. ~P dom O ) /\ ( dom f C_ NN /\ f : dom f -1-1-onto-> x ) ) /\ a : NN --> ~P X ) -> ( O ` U_ n e. NN ( a ` n ) ) <_ ( sum^ ` ( n e. NN |-> ( O ` ( a ` n ) ) ) ) ) |
71 |
|
simprl |
|- ( ( ( ph /\ x e. ~P dom O ) /\ ( dom f C_ NN /\ f : dom f -1-1-onto-> x ) ) -> dom f C_ NN ) |
72 |
|
simprr |
|- ( ( ( ph /\ x e. ~P dom O ) /\ ( dom f C_ NN /\ f : dom f -1-1-onto-> x ) ) -> f : dom f -1-1-onto-> x ) |
73 |
|
eleq1w |
|- ( m = n -> ( m e. dom f <-> n e. dom f ) ) |
74 |
|
fveq2 |
|- ( m = n -> ( f ` m ) = ( f ` n ) ) |
75 |
73 74
|
ifbieq1d |
|- ( m = n -> if ( m e. dom f , ( f ` m ) , (/) ) = if ( n e. dom f , ( f ` n ) , (/) ) ) |
76 |
75
|
cbvmptv |
|- ( m e. NN |-> if ( m e. dom f , ( f ` m ) , (/) ) ) = ( n e. NN |-> if ( n e. dom f , ( f ` n ) , (/) ) ) |
77 |
59 60 67 70 71 72 76
|
isomenndlem |
|- ( ( ( ph /\ x e. ~P dom O ) /\ ( dom f C_ NN /\ f : dom f -1-1-onto-> x ) ) -> ( O ` U. x ) <_ ( sum^ ` ( O |` x ) ) ) |
78 |
77
|
ex |
|- ( ( ph /\ x e. ~P dom O ) -> ( ( dom f C_ NN /\ f : dom f -1-1-onto-> x ) -> ( O ` U. x ) <_ ( sum^ ` ( O |` x ) ) ) ) |
79 |
78
|
ad2antrr |
|- ( ( ( ( ph /\ x e. ~P dom O ) /\ x ~<_ _om ) /\ x =/= (/) ) -> ( ( dom f C_ NN /\ f : dom f -1-1-onto-> x ) -> ( O ` U. x ) <_ ( sum^ ` ( O |` x ) ) ) ) |
80 |
79
|
exlimdv |
|- ( ( ( ( ph /\ x e. ~P dom O ) /\ x ~<_ _om ) /\ x =/= (/) ) -> ( E. f ( dom f C_ NN /\ f : dom f -1-1-onto-> x ) -> ( O ` U. x ) <_ ( sum^ ` ( O |` x ) ) ) ) |
81 |
58 80
|
mpd |
|- ( ( ( ( ph /\ x e. ~P dom O ) /\ x ~<_ _om ) /\ x =/= (/) ) -> ( O ` U. x ) <_ ( sum^ ` ( O |` x ) ) ) |
82 |
54 56 81
|
syl2anc |
|- ( ( ( ( ph /\ x e. ~P dom O ) /\ x ~<_ _om ) /\ -. x = (/) ) -> ( O ` U. x ) <_ ( sum^ ` ( O |` x ) ) ) |
83 |
53 82
|
pm2.61dan |
|- ( ( ( ph /\ x e. ~P dom O ) /\ x ~<_ _om ) -> ( O ` U. x ) <_ ( sum^ ` ( O |` x ) ) ) |
84 |
83
|
ex |
|- ( ( ph /\ x e. ~P dom O ) -> ( x ~<_ _om -> ( O ` U. x ) <_ ( sum^ ` ( O |` x ) ) ) ) |
85 |
84
|
ralrimiva |
|- ( ph -> A. x e. ~P dom O ( x ~<_ _om -> ( O ` U. x ) <_ ( sum^ ` ( O |` x ) ) ) ) |
86 |
18 31 85
|
jca31 |
|- ( ph -> ( ( ( ( O : dom O --> ( 0 [,] +oo ) /\ dom O = ~P U. dom O ) /\ ( O ` (/) ) = 0 ) /\ A. x e. ~P U. dom O A. y e. ~P x ( O ` y ) <_ ( O ` x ) ) /\ A. x e. ~P dom O ( x ~<_ _om -> ( O ` U. x ) <_ ( sum^ ` ( O |` x ) ) ) ) ) |
87 |
1
|
pwexd |
|- ( ph -> ~P X e. _V ) |
88 |
2 87
|
fexd |
|- ( ph -> O e. _V ) |
89 |
|
isome |
|- ( O e. _V -> ( O e. OutMeas <-> ( ( ( ( O : dom O --> ( 0 [,] +oo ) /\ dom O = ~P U. dom O ) /\ ( O ` (/) ) = 0 ) /\ A. x e. ~P U. dom O A. y e. ~P x ( O ` y ) <_ ( O ` x ) ) /\ A. x e. ~P dom O ( x ~<_ _om -> ( O ` U. x ) <_ ( sum^ ` ( O |` x ) ) ) ) ) ) |
90 |
88 89
|
syl |
|- ( ph -> ( O e. OutMeas <-> ( ( ( ( O : dom O --> ( 0 [,] +oo ) /\ dom O = ~P U. dom O ) /\ ( O ` (/) ) = 0 ) /\ A. x e. ~P U. dom O A. y e. ~P x ( O ` y ) <_ ( O ` x ) ) /\ A. x e. ~P dom O ( x ~<_ _om -> ( O ` U. x ) <_ ( sum^ ` ( O |` x ) ) ) ) ) ) |
91 |
86 90
|
mpbird |
|- ( ph -> O e. OutMeas ) |