Metamath Proof Explorer


Theorem vonval

Description: Value of the Lebesgue measure for a given finite dimension. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypothesis vonval.1
|- ( ph -> X e. Fin )
Assertion vonval
|- ( ph -> ( voln ` X ) = ( ( voln* ` X ) |` ( CaraGen ` ( voln* ` X ) ) ) )

Proof

Step Hyp Ref Expression
1 vonval.1
 |-  ( ph -> X e. Fin )
2 df-voln
 |-  voln = ( x e. Fin |-> ( ( voln* ` x ) |` ( CaraGen ` ( voln* ` x ) ) ) )
3 fveq2
 |-  ( x = X -> ( voln* ` x ) = ( voln* ` X ) )
4 2fveq3
 |-  ( x = X -> ( CaraGen ` ( voln* ` x ) ) = ( CaraGen ` ( voln* ` X ) ) )
5 3 4 reseq12d
 |-  ( x = X -> ( ( voln* ` x ) |` ( CaraGen ` ( voln* ` x ) ) ) = ( ( voln* ` X ) |` ( CaraGen ` ( voln* ` X ) ) ) )
6 fvex
 |-  ( voln* ` X ) e. _V
7 6 resex
 |-  ( ( voln* ` X ) |` ( CaraGen ` ( voln* ` X ) ) ) e. _V
8 7 a1i
 |-  ( ph -> ( ( voln* ` X ) |` ( CaraGen ` ( voln* ` X ) ) ) e. _V )
9 2 5 1 8 fvmptd3
 |-  ( ph -> ( voln ` X ) = ( ( voln* ` X ) |` ( CaraGen ` ( voln* ` X ) ) ) )