Step |
Hyp |
Ref |
Expression |
1 |
|
vonval.1 |
|- ( ph -> X e. Fin ) |
2 |
|
df-voln |
|- voln = ( x e. Fin |-> ( ( voln* ` x ) |` ( CaraGen ` ( voln* ` x ) ) ) ) |
3 |
|
fveq2 |
|- ( x = X -> ( voln* ` x ) = ( voln* ` X ) ) |
4 |
|
2fveq3 |
|- ( x = X -> ( CaraGen ` ( voln* ` x ) ) = ( CaraGen ` ( voln* ` X ) ) ) |
5 |
3 4
|
reseq12d |
|- ( x = X -> ( ( voln* ` x ) |` ( CaraGen ` ( voln* ` x ) ) ) = ( ( voln* ` X ) |` ( CaraGen ` ( voln* ` X ) ) ) ) |
6 |
|
fvex |
|- ( voln* ` X ) e. _V |
7 |
6
|
resex |
|- ( ( voln* ` X ) |` ( CaraGen ` ( voln* ` X ) ) ) e. _V |
8 |
7
|
a1i |
|- ( ph -> ( ( voln* ` X ) |` ( CaraGen ` ( voln* ` X ) ) ) e. _V ) |
9 |
2 5 1 8
|
fvmptd3 |
|- ( ph -> ( voln ` X ) = ( ( voln* ` X ) |` ( CaraGen ` ( voln* ` X ) ) ) ) |