Metamath Proof Explorer


Definition df-voln

Description: Define the Lebesgue measure for the space of multidimensional real numbers. The cardinality of x is the dimension of the space modeled. Definition 115C of Fremlin1 p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Assertion df-voln
|- voln = ( x e. Fin |-> ( ( voln* ` x ) |` ( CaraGen ` ( voln* ` x ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cvoln
 |-  voln
1 vx
 |-  x
2 cfn
 |-  Fin
3 covoln
 |-  voln*
4 1 cv
 |-  x
5 4 3 cfv
 |-  ( voln* ` x )
6 ccaragen
 |-  CaraGen
7 5 6 cfv
 |-  ( CaraGen ` ( voln* ` x ) )
8 5 7 cres
 |-  ( ( voln* ` x ) |` ( CaraGen ` ( voln* ` x ) ) )
9 1 2 8 cmpt
 |-  ( x e. Fin |-> ( ( voln* ` x ) |` ( CaraGen ` ( voln* ` x ) ) ) )
10 0 9 wceq
 |-  voln = ( x e. Fin |-> ( ( voln* ` x ) |` ( CaraGen ` ( voln* ` x ) ) ) )