Metamath Proof Explorer


Definition df-voln

Description: Define the Lebesgue measure for the space of multidimensional real numbers. The cardinality of x is the dimension of the space modeled. Definition 115C of Fremlin1 p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Assertion df-voln voln = ( 𝑥 ∈ Fin ↦ ( ( voln* ‘ 𝑥 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑥 ) ) ) )

Detailed syntax breakdown

Step Hyp Ref Expression
0 cvoln voln
1 vx 𝑥
2 cfn Fin
3 covoln voln*
4 1 cv 𝑥
5 4 3 cfv ( voln* ‘ 𝑥 )
6 ccaragen CaraGen
7 5 6 cfv ( CaraGen ‘ ( voln* ‘ 𝑥 ) )
8 5 7 cres ( ( voln* ‘ 𝑥 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑥 ) ) )
9 1 2 8 cmpt ( 𝑥 ∈ Fin ↦ ( ( voln* ‘ 𝑥 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑥 ) ) ) )
10 0 9 wceq voln = ( 𝑥 ∈ Fin ↦ ( ( voln* ‘ 𝑥 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑥 ) ) ) )