Description: Define the Lebesgue measure for the space of multidimensional real numbers. The cardinality of x is the dimension of the space modeled. Definition 115C of Fremlin1 p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | df-voln | ⊢ voln = ( 𝑥 ∈ Fin ↦ ( ( voln* ‘ 𝑥 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑥 ) ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | cvoln | ⊢ voln | |
1 | vx | ⊢ 𝑥 | |
2 | cfn | ⊢ Fin | |
3 | covoln | ⊢ voln* | |
4 | 1 | cv | ⊢ 𝑥 |
5 | 4 3 | cfv | ⊢ ( voln* ‘ 𝑥 ) |
6 | ccaragen | ⊢ CaraGen | |
7 | 5 6 | cfv | ⊢ ( CaraGen ‘ ( voln* ‘ 𝑥 ) ) |
8 | 5 7 | cres | ⊢ ( ( voln* ‘ 𝑥 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑥 ) ) ) |
9 | 1 2 8 | cmpt | ⊢ ( 𝑥 ∈ Fin ↦ ( ( voln* ‘ 𝑥 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑥 ) ) ) ) |
10 | 0 9 | wceq | ⊢ voln = ( 𝑥 ∈ Fin ↦ ( ( voln* ‘ 𝑥 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑥 ) ) ) ) |