Metamath Proof Explorer


Theorem vonval

Description: Value of the Lebesgue measure for a given finite dimension. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypothesis vonval.1 ( 𝜑𝑋 ∈ Fin )
Assertion vonval ( 𝜑 → ( voln ‘ 𝑋 ) = ( ( voln* ‘ 𝑋 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) )

Proof

Step Hyp Ref Expression
1 vonval.1 ( 𝜑𝑋 ∈ Fin )
2 df-voln voln = ( 𝑥 ∈ Fin ↦ ( ( voln* ‘ 𝑥 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑥 ) ) ) )
3 fveq2 ( 𝑥 = 𝑋 → ( voln* ‘ 𝑥 ) = ( voln* ‘ 𝑋 ) )
4 2fveq3 ( 𝑥 = 𝑋 → ( CaraGen ‘ ( voln* ‘ 𝑥 ) ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) )
5 3 4 reseq12d ( 𝑥 = 𝑋 → ( ( voln* ‘ 𝑥 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑥 ) ) ) = ( ( voln* ‘ 𝑋 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) )
6 fvex ( voln* ‘ 𝑋 ) ∈ V
7 6 resex ( ( voln* ‘ 𝑋 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) ∈ V
8 7 a1i ( 𝜑 → ( ( voln* ‘ 𝑋 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) ∈ V )
9 2 5 1 8 fvmptd3 ( 𝜑 → ( voln ‘ 𝑋 ) = ( ( voln* ‘ 𝑋 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) )