Step |
Hyp |
Ref |
Expression |
1 |
|
ovnval.1 |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
2 |
|
df-ovoln |
⊢ voln* = ( 𝑥 ∈ Fin ↦ ( 𝑦 ∈ 𝒫 ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑥 ) ↑m ℕ ) ( 𝑦 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } , ℝ* , < ) ) ) ) |
3 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( ℝ ↑m 𝑥 ) = ( ℝ ↑m 𝑋 ) ) |
4 |
3
|
pweqd |
⊢ ( 𝑥 = 𝑋 → 𝒫 ( ℝ ↑m 𝑥 ) = 𝒫 ( ℝ ↑m 𝑋 ) ) |
5 |
|
eqeq1 |
⊢ ( 𝑥 = 𝑋 → ( 𝑥 = ∅ ↔ 𝑋 = ∅ ) ) |
6 |
|
oveq2 |
⊢ ( 𝑥 = 𝑋 → ( ( ℝ × ℝ ) ↑m 𝑥 ) = ( ( ℝ × ℝ ) ↑m 𝑋 ) ) |
7 |
6
|
oveq1d |
⊢ ( 𝑥 = 𝑋 → ( ( ( ℝ × ℝ ) ↑m 𝑥 ) ↑m ℕ ) = ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ) |
8 |
|
ixpeq1 |
⊢ ( 𝑥 = 𝑋 → X 𝑘 ∈ 𝑥 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) = X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
9 |
8
|
iuneq2d |
⊢ ( 𝑥 = 𝑋 → ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) = ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
10 |
9
|
sseq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑦 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ↔ 𝑦 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
11 |
|
simpl |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑗 ∈ ℕ ) → 𝑥 = 𝑋 ) |
12 |
11
|
prodeq1d |
⊢ ( ( 𝑥 = 𝑋 ∧ 𝑗 ∈ ℕ ) → ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
13 |
12
|
mpteq2dva |
⊢ ( 𝑥 = 𝑋 → ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) = ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
14 |
13
|
fveq2d |
⊢ ( 𝑥 = 𝑋 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) |
15 |
14
|
eqeq2d |
⊢ ( 𝑥 = 𝑋 → ( 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ↔ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) |
16 |
10 15
|
anbi12d |
⊢ ( 𝑥 = 𝑋 → ( ( 𝑦 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ↔ ( 𝑦 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
17 |
7 16
|
rexeqbidv |
⊢ ( 𝑥 = 𝑋 → ( ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑥 ) ↑m ℕ ) ( 𝑦 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ↔ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝑦 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
18 |
17
|
rabbidv |
⊢ ( 𝑥 = 𝑋 → { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑥 ) ↑m ℕ ) ( 𝑦 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } = { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝑦 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } ) |
19 |
18
|
infeq1d |
⊢ ( 𝑥 = 𝑋 → inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑥 ) ↑m ℕ ) ( 𝑦 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } , ℝ* , < ) = inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝑦 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } , ℝ* , < ) ) |
20 |
5 19
|
ifbieq2d |
⊢ ( 𝑥 = 𝑋 → if ( 𝑥 = ∅ , 0 , inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑥 ) ↑m ℕ ) ( 𝑦 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } , ℝ* , < ) ) = if ( 𝑋 = ∅ , 0 , inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝑦 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } , ℝ* , < ) ) ) |
21 |
4 20
|
mpteq12dv |
⊢ ( 𝑥 = 𝑋 → ( 𝑦 ∈ 𝒫 ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑥 ) ↑m ℕ ) ( 𝑦 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑥 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑥 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } , ℝ* , < ) ) ) = ( 𝑦 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ if ( 𝑋 = ∅ , 0 , inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝑦 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } , ℝ* , < ) ) ) ) |
22 |
|
ovex |
⊢ ( ℝ ↑m 𝑋 ) ∈ V |
23 |
22
|
pwex |
⊢ 𝒫 ( ℝ ↑m 𝑋 ) ∈ V |
24 |
23
|
mptex |
⊢ ( 𝑦 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ if ( 𝑋 = ∅ , 0 , inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝑦 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } , ℝ* , < ) ) ) ∈ V |
25 |
24
|
a1i |
⊢ ( 𝜑 → ( 𝑦 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ if ( 𝑋 = ∅ , 0 , inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝑦 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } , ℝ* , < ) ) ) ∈ V ) |
26 |
2 21 1 25
|
fvmptd3 |
⊢ ( 𝜑 → ( voln* ‘ 𝑋 ) = ( 𝑦 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ if ( 𝑋 = ∅ , 0 , inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝑦 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } , ℝ* , < ) ) ) ) |