Metamath Proof Explorer


Theorem ovnval

Description: Value of the Lebesgue outer measure for a given finite dimension. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypothesis ovnval.1 ( 𝜑𝑋 ∈ Fin )
Assertion ovnval ( 𝜑 → ( voln* ‘ 𝑋 ) = ( 𝑦 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ if ( 𝑋 = ∅ , 0 , inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝑦 𝑗 ∈ ℕ X 𝑘𝑋 ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } , ℝ* , < ) ) ) )

Proof

Step Hyp Ref Expression
1 ovnval.1 ( 𝜑𝑋 ∈ Fin )
2 df-ovoln voln* = ( 𝑥 ∈ Fin ↦ ( 𝑦 ∈ 𝒫 ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑥 ) ↑m ℕ ) ( 𝑦 𝑗 ∈ ℕ X 𝑘𝑥 ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘𝑥 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } , ℝ* , < ) ) ) )
3 oveq2 ( 𝑥 = 𝑋 → ( ℝ ↑m 𝑥 ) = ( ℝ ↑m 𝑋 ) )
4 3 pweqd ( 𝑥 = 𝑋 → 𝒫 ( ℝ ↑m 𝑥 ) = 𝒫 ( ℝ ↑m 𝑋 ) )
5 eqeq1 ( 𝑥 = 𝑋 → ( 𝑥 = ∅ ↔ 𝑋 = ∅ ) )
6 oveq2 ( 𝑥 = 𝑋 → ( ( ℝ × ℝ ) ↑m 𝑥 ) = ( ( ℝ × ℝ ) ↑m 𝑋 ) )
7 6 oveq1d ( 𝑥 = 𝑋 → ( ( ( ℝ × ℝ ) ↑m 𝑥 ) ↑m ℕ ) = ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) )
8 ixpeq1 ( 𝑥 = 𝑋X 𝑘𝑥 ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) = X 𝑘𝑋 ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) )
9 8 iuneq2d ( 𝑥 = 𝑋 𝑗 ∈ ℕ X 𝑘𝑥 ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) = 𝑗 ∈ ℕ X 𝑘𝑋 ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) )
10 9 sseq2d ( 𝑥 = 𝑋 → ( 𝑦 𝑗 ∈ ℕ X 𝑘𝑥 ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ↔ 𝑦 𝑗 ∈ ℕ X 𝑘𝑋 ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) )
11 simpl ( ( 𝑥 = 𝑋𝑗 ∈ ℕ ) → 𝑥 = 𝑋 )
12 11 prodeq1d ( ( 𝑥 = 𝑋𝑗 ∈ ℕ ) → ∏ 𝑘𝑥 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) = ∏ 𝑘𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) )
13 12 mpteq2dva ( 𝑥 = 𝑋 → ( 𝑗 ∈ ℕ ↦ ∏ 𝑘𝑥 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) = ( 𝑗 ∈ ℕ ↦ ∏ 𝑘𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) )
14 13 fveq2d ( 𝑥 = 𝑋 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘𝑥 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) )
15 14 eqeq2d ( 𝑥 = 𝑋 → ( 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘𝑥 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ↔ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) )
16 10 15 anbi12d ( 𝑥 = 𝑋 → ( ( 𝑦 𝑗 ∈ ℕ X 𝑘𝑥 ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘𝑥 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ↔ ( 𝑦 𝑗 ∈ ℕ X 𝑘𝑋 ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) )
17 7 16 rexeqbidv ( 𝑥 = 𝑋 → ( ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑥 ) ↑m ℕ ) ( 𝑦 𝑗 ∈ ℕ X 𝑘𝑥 ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘𝑥 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ↔ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝑦 𝑗 ∈ ℕ X 𝑘𝑋 ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) )
18 17 rabbidv ( 𝑥 = 𝑋 → { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑥 ) ↑m ℕ ) ( 𝑦 𝑗 ∈ ℕ X 𝑘𝑥 ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘𝑥 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } = { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝑦 𝑗 ∈ ℕ X 𝑘𝑋 ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } )
19 18 infeq1d ( 𝑥 = 𝑋 → inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑥 ) ↑m ℕ ) ( 𝑦 𝑗 ∈ ℕ X 𝑘𝑥 ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘𝑥 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } , ℝ* , < ) = inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝑦 𝑗 ∈ ℕ X 𝑘𝑋 ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } , ℝ* , < ) )
20 5 19 ifbieq2d ( 𝑥 = 𝑋 → if ( 𝑥 = ∅ , 0 , inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑥 ) ↑m ℕ ) ( 𝑦 𝑗 ∈ ℕ X 𝑘𝑥 ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘𝑥 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } , ℝ* , < ) ) = if ( 𝑋 = ∅ , 0 , inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝑦 𝑗 ∈ ℕ X 𝑘𝑋 ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } , ℝ* , < ) ) )
21 4 20 mpteq12dv ( 𝑥 = 𝑋 → ( 𝑦 ∈ 𝒫 ( ℝ ↑m 𝑥 ) ↦ if ( 𝑥 = ∅ , 0 , inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑥 ) ↑m ℕ ) ( 𝑦 𝑗 ∈ ℕ X 𝑘𝑥 ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘𝑥 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } , ℝ* , < ) ) ) = ( 𝑦 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ if ( 𝑋 = ∅ , 0 , inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝑦 𝑗 ∈ ℕ X 𝑘𝑋 ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } , ℝ* , < ) ) ) )
22 ovex ( ℝ ↑m 𝑋 ) ∈ V
23 22 pwex 𝒫 ( ℝ ↑m 𝑋 ) ∈ V
24 23 mptex ( 𝑦 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ if ( 𝑋 = ∅ , 0 , inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝑦 𝑗 ∈ ℕ X 𝑘𝑋 ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } , ℝ* , < ) ) ) ∈ V
25 24 a1i ( 𝜑 → ( 𝑦 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ if ( 𝑋 = ∅ , 0 , inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝑦 𝑗 ∈ ℕ X 𝑘𝑋 ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } , ℝ* , < ) ) ) ∈ V )
26 2 21 1 25 fvmptd3 ( 𝜑 → ( voln* ‘ 𝑋 ) = ( 𝑦 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ if ( 𝑋 = ∅ , 0 , inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝑦 𝑗 ∈ ℕ X 𝑘𝑋 ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } , ℝ* , < ) ) ) )