Metamath Proof Explorer


Theorem vonmea

Description: ( volnX ) is a measure on the space of multidimensional real numbers with dimension equal to the cardinality of the finite set X . Comments in Definition 115E of Fremlin1 p. 31 . (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypothesis vonmea.1 ( 𝜑𝑋 ∈ Fin )
Assertion vonmea ( 𝜑 → ( voln ‘ 𝑋 ) ∈ Meas )

Proof

Step Hyp Ref Expression
1 vonmea.1 ( 𝜑𝑋 ∈ Fin )
2 1 vonval ( 𝜑 → ( voln ‘ 𝑋 ) = ( ( voln* ‘ 𝑋 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) )
3 1 ovnome ( 𝜑 → ( voln* ‘ 𝑋 ) ∈ OutMeas )
4 eqid ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) )
5 3 4 caratheodory ( 𝜑 → ( ( voln* ‘ 𝑋 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) ∈ Meas )
6 2 5 eqeltrd ( 𝜑 → ( voln ‘ 𝑋 ) ∈ Meas )