Metamath Proof Explorer


Theorem ovnome

Description: ( voln*X ) is an outer measure on the space of multidimensional real numbers with dimension equal to the cardinality of the finite set X . Proposition 115D (a) of Fremlin1 p. 30 . (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypothesis ovnome.1 ( 𝜑𝑋 ∈ Fin )
Assertion ovnome ( 𝜑 → ( voln* ‘ 𝑋 ) ∈ OutMeas )

Proof

Step Hyp Ref Expression
1 ovnome.1 ( 𝜑𝑋 ∈ Fin )
2 ovexd ( 𝜑 → ( ℝ ↑m 𝑋 ) ∈ V )
3 1 ovnf ( 𝜑 → ( voln* ‘ 𝑋 ) : 𝒫 ( ℝ ↑m 𝑋 ) ⟶ ( 0 [,] +∞ ) )
4 1 ovn0 ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ ∅ ) = 0 )
5 1 3ad2ant1 ( ( 𝜑𝑥 ⊆ ( ℝ ↑m 𝑋 ) ∧ 𝑦𝑥 ) → 𝑋 ∈ Fin )
6 simp3 ( ( 𝜑𝑥 ⊆ ( ℝ ↑m 𝑋 ) ∧ 𝑦𝑥 ) → 𝑦𝑥 )
7 simp2 ( ( 𝜑𝑥 ⊆ ( ℝ ↑m 𝑋 ) ∧ 𝑦𝑥 ) → 𝑥 ⊆ ( ℝ ↑m 𝑋 ) )
8 5 6 7 ovnssle ( ( 𝜑𝑥 ⊆ ( ℝ ↑m 𝑋 ) ∧ 𝑦𝑥 ) → ( ( voln* ‘ 𝑋 ) ‘ 𝑦 ) ≤ ( ( voln* ‘ 𝑋 ) ‘ 𝑥 ) )
9 1 adantr ( ( 𝜑𝑎 : ℕ ⟶ 𝒫 ( ℝ ↑m 𝑋 ) ) → 𝑋 ∈ Fin )
10 simpr ( ( 𝜑𝑎 : ℕ ⟶ 𝒫 ( ℝ ↑m 𝑋 ) ) → 𝑎 : ℕ ⟶ 𝒫 ( ℝ ↑m 𝑋 ) )
11 9 10 ovnsubadd ( ( 𝜑𝑎 : ℕ ⟶ 𝒫 ( ℝ ↑m 𝑋 ) ) → ( ( voln* ‘ 𝑋 ) ‘ 𝑛 ∈ ℕ ( 𝑎𝑛 ) ) ≤ ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( ( voln* ‘ 𝑋 ) ‘ ( 𝑎𝑛 ) ) ) ) )
12 2 3 4 8 11 isomennd ( 𝜑 → ( voln* ‘ 𝑋 ) ∈ OutMeas )