Step |
Hyp |
Ref |
Expression |
1 |
|
ovnome.1 |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
2 |
|
ovexd |
⊢ ( 𝜑 → ( ℝ ↑m 𝑋 ) ∈ V ) |
3 |
1
|
ovnf |
⊢ ( 𝜑 → ( voln* ‘ 𝑋 ) : 𝒫 ( ℝ ↑m 𝑋 ) ⟶ ( 0 [,] +∞ ) ) |
4 |
1
|
ovn0 |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ ∅ ) = 0 ) |
5 |
1
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ( ℝ ↑m 𝑋 ) ∧ 𝑦 ⊆ 𝑥 ) → 𝑋 ∈ Fin ) |
6 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ( ℝ ↑m 𝑋 ) ∧ 𝑦 ⊆ 𝑥 ) → 𝑦 ⊆ 𝑥 ) |
7 |
|
simp2 |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ( ℝ ↑m 𝑋 ) ∧ 𝑦 ⊆ 𝑥 ) → 𝑥 ⊆ ( ℝ ↑m 𝑋 ) ) |
8 |
5 6 7
|
ovnssle |
⊢ ( ( 𝜑 ∧ 𝑥 ⊆ ( ℝ ↑m 𝑋 ) ∧ 𝑦 ⊆ 𝑥 ) → ( ( voln* ‘ 𝑋 ) ‘ 𝑦 ) ≤ ( ( voln* ‘ 𝑋 ) ‘ 𝑥 ) ) |
9 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 : ℕ ⟶ 𝒫 ( ℝ ↑m 𝑋 ) ) → 𝑋 ∈ Fin ) |
10 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 : ℕ ⟶ 𝒫 ( ℝ ↑m 𝑋 ) ) → 𝑎 : ℕ ⟶ 𝒫 ( ℝ ↑m 𝑋 ) ) |
11 |
9 10
|
ovnsubadd |
⊢ ( ( 𝜑 ∧ 𝑎 : ℕ ⟶ 𝒫 ( ℝ ↑m 𝑋 ) ) → ( ( voln* ‘ 𝑋 ) ‘ ∪ 𝑛 ∈ ℕ ( 𝑎 ‘ 𝑛 ) ) ≤ ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( ( voln* ‘ 𝑋 ) ‘ ( 𝑎 ‘ 𝑛 ) ) ) ) ) |
12 |
2 3 4 8 11
|
isomennd |
⊢ ( 𝜑 → ( voln* ‘ 𝑋 ) ∈ OutMeas ) |