| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovnssle.1 |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 2 |
|
ovnssle.2 |
⊢ ( 𝜑 → 𝐴 ⊆ 𝐵 ) |
| 3 |
|
ovnssle.3 |
⊢ ( 𝜑 → 𝐵 ⊆ ( ℝ ↑m 𝑋 ) ) |
| 4 |
|
0le0 |
⊢ 0 ≤ 0 |
| 5 |
4
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 0 ≤ 0 ) |
| 6 |
|
fveq2 |
⊢ ( 𝑋 = ∅ → ( voln* ‘ 𝑋 ) = ( voln* ‘ ∅ ) ) |
| 7 |
6
|
fveq1d |
⊢ ( 𝑋 = ∅ → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) = ( ( voln* ‘ ∅ ) ‘ 𝐴 ) ) |
| 8 |
7
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) = ( ( voln* ‘ ∅ ) ‘ 𝐴 ) ) |
| 9 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝐴 ⊆ 𝐵 ) |
| 10 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝐵 ⊆ ( ℝ ↑m 𝑋 ) ) |
| 11 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝑋 = ∅ ) |
| 12 |
11
|
oveq2d |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ℝ ↑m 𝑋 ) = ( ℝ ↑m ∅ ) ) |
| 13 |
10 12
|
sseqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝐵 ⊆ ( ℝ ↑m ∅ ) ) |
| 14 |
9 13
|
sstrd |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝐴 ⊆ ( ℝ ↑m ∅ ) ) |
| 15 |
14
|
ovn0val |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ( voln* ‘ ∅ ) ‘ 𝐴 ) = 0 ) |
| 16 |
8 15
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) = 0 ) |
| 17 |
6
|
fveq1d |
⊢ ( 𝑋 = ∅ → ( ( voln* ‘ 𝑋 ) ‘ 𝐵 ) = ( ( voln* ‘ ∅ ) ‘ 𝐵 ) ) |
| 18 |
17
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ( voln* ‘ 𝑋 ) ‘ 𝐵 ) = ( ( voln* ‘ ∅ ) ‘ 𝐵 ) ) |
| 19 |
13
|
ovn0val |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ( voln* ‘ ∅ ) ‘ 𝐵 ) = 0 ) |
| 20 |
18 19
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ( voln* ‘ 𝑋 ) ‘ 𝐵 ) = 0 ) |
| 21 |
16 20
|
breq12d |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) ≤ ( ( voln* ‘ 𝑋 ) ‘ 𝐵 ) ↔ 0 ≤ 0 ) ) |
| 22 |
5 21
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) ≤ ( ( voln* ‘ 𝑋 ) ‘ 𝐵 ) ) |
| 23 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝑋 ∈ Fin ) |
| 24 |
|
neqne |
⊢ ( ¬ 𝑋 = ∅ → 𝑋 ≠ ∅ ) |
| 25 |
24
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝑋 ≠ ∅ ) |
| 26 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝐴 ⊆ 𝐵 ) |
| 27 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝐵 ⊆ ( ℝ ↑m 𝑋 ) ) |
| 28 |
|
eqid |
⊢ { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } = { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } |
| 29 |
|
eqid |
⊢ { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐵 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } = { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐵 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } |
| 30 |
23 25 26 27 28 29
|
ovnsslelem |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) ≤ ( ( voln* ‘ 𝑋 ) ‘ 𝐵 ) ) |
| 31 |
22 30
|
pm2.61dan |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) ≤ ( ( voln* ‘ 𝑋 ) ‘ 𝐵 ) ) |