Metamath Proof Explorer


Theorem ovnssle

Description: The (multidimensional) Lebesgue outer measure of a subset is less than the L.o.m. of the whole set. This is step (iii) of the proof of Proposition 115D (a) of Fremlin1 p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ovnssle.1 ( 𝜑𝑋 ∈ Fin )
ovnssle.2 ( 𝜑𝐴𝐵 )
ovnssle.3 ( 𝜑𝐵 ⊆ ( ℝ ↑m 𝑋 ) )
Assertion ovnssle ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) ≤ ( ( voln* ‘ 𝑋 ) ‘ 𝐵 ) )

Proof

Step Hyp Ref Expression
1 ovnssle.1 ( 𝜑𝑋 ∈ Fin )
2 ovnssle.2 ( 𝜑𝐴𝐵 )
3 ovnssle.3 ( 𝜑𝐵 ⊆ ( ℝ ↑m 𝑋 ) )
4 0le0 0 ≤ 0
5 4 a1i ( ( 𝜑𝑋 = ∅ ) → 0 ≤ 0 )
6 fveq2 ( 𝑋 = ∅ → ( voln* ‘ 𝑋 ) = ( voln* ‘ ∅ ) )
7 6 fveq1d ( 𝑋 = ∅ → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) = ( ( voln* ‘ ∅ ) ‘ 𝐴 ) )
8 7 adantl ( ( 𝜑𝑋 = ∅ ) → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) = ( ( voln* ‘ ∅ ) ‘ 𝐴 ) )
9 2 adantr ( ( 𝜑𝑋 = ∅ ) → 𝐴𝐵 )
10 3 adantr ( ( 𝜑𝑋 = ∅ ) → 𝐵 ⊆ ( ℝ ↑m 𝑋 ) )
11 simpr ( ( 𝜑𝑋 = ∅ ) → 𝑋 = ∅ )
12 11 oveq2d ( ( 𝜑𝑋 = ∅ ) → ( ℝ ↑m 𝑋 ) = ( ℝ ↑m ∅ ) )
13 10 12 sseqtrd ( ( 𝜑𝑋 = ∅ ) → 𝐵 ⊆ ( ℝ ↑m ∅ ) )
14 9 13 sstrd ( ( 𝜑𝑋 = ∅ ) → 𝐴 ⊆ ( ℝ ↑m ∅ ) )
15 14 ovn0val ( ( 𝜑𝑋 = ∅ ) → ( ( voln* ‘ ∅ ) ‘ 𝐴 ) = 0 )
16 8 15 eqtrd ( ( 𝜑𝑋 = ∅ ) → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) = 0 )
17 6 fveq1d ( 𝑋 = ∅ → ( ( voln* ‘ 𝑋 ) ‘ 𝐵 ) = ( ( voln* ‘ ∅ ) ‘ 𝐵 ) )
18 17 adantl ( ( 𝜑𝑋 = ∅ ) → ( ( voln* ‘ 𝑋 ) ‘ 𝐵 ) = ( ( voln* ‘ ∅ ) ‘ 𝐵 ) )
19 13 ovn0val ( ( 𝜑𝑋 = ∅ ) → ( ( voln* ‘ ∅ ) ‘ 𝐵 ) = 0 )
20 18 19 eqtrd ( ( 𝜑𝑋 = ∅ ) → ( ( voln* ‘ 𝑋 ) ‘ 𝐵 ) = 0 )
21 16 20 breq12d ( ( 𝜑𝑋 = ∅ ) → ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) ≤ ( ( voln* ‘ 𝑋 ) ‘ 𝐵 ) ↔ 0 ≤ 0 ) )
22 5 21 mpbird ( ( 𝜑𝑋 = ∅ ) → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) ≤ ( ( voln* ‘ 𝑋 ) ‘ 𝐵 ) )
23 1 adantr ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝑋 ∈ Fin )
24 neqne ( ¬ 𝑋 = ∅ → 𝑋 ≠ ∅ )
25 24 adantl ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝑋 ≠ ∅ )
26 2 adantr ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝐴𝐵 )
27 3 adantr ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝐵 ⊆ ( ℝ ↑m 𝑋 ) )
28 eqid { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 𝑗 ∈ ℕ X 𝑘𝑋 ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } = { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 𝑗 ∈ ℕ X 𝑘𝑋 ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) }
29 eqid { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐵 𝑗 ∈ ℕ X 𝑘𝑋 ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } = { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐵 𝑗 ∈ ℕ X 𝑘𝑋 ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) }
30 23 25 26 27 28 29 ovnsslelem ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) ≤ ( ( voln* ‘ 𝑋 ) ‘ 𝐵 ) )
31 22 30 pm2.61dan ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) ≤ ( ( voln* ‘ 𝑋 ) ‘ 𝐵 ) )