Description: The (multidimensional) Lebesgue outer measure of a subset is less than the L.o.m. of the whole set. This is step (iii) of the proof of Proposition 115D (a) of Fremlin1 p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ovnssle.1 | |
|
ovnssle.2 | |
||
ovnssle.3 | |
||
Assertion | ovnssle | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovnssle.1 | |
|
2 | ovnssle.2 | |
|
3 | ovnssle.3 | |
|
4 | 0le0 | |
|
5 | 4 | a1i | |
6 | fveq2 | |
|
7 | 6 | fveq1d | |
8 | 7 | adantl | |
9 | 2 | adantr | |
10 | 3 | adantr | |
11 | simpr | |
|
12 | 11 | oveq2d | |
13 | 10 12 | sseqtrd | |
14 | 9 13 | sstrd | |
15 | 14 | ovn0val | |
16 | 8 15 | eqtrd | |
17 | 6 | fveq1d | |
18 | 17 | adantl | |
19 | 13 | ovn0val | |
20 | 18 19 | eqtrd | |
21 | 16 20 | breq12d | |
22 | 5 21 | mpbird | |
23 | 1 | adantr | |
24 | neqne | |
|
25 | 24 | adantl | |
26 | 2 | adantr | |
27 | 3 | adantr | |
28 | eqid | |
|
29 | eqid | |
|
30 | 23 25 26 27 28 29 | ovnsslelem | |
31 | 22 30 | pm2.61dan | |