Metamath Proof Explorer


Theorem ovnssle

Description: The (multidimensional) Lebesgue outer measure of a subset is less than the L.o.m. of the whole set. This is step (iii) of the proof of Proposition 115D (a) of Fremlin1 p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ovnssle.1 φXFin
ovnssle.2 φAB
ovnssle.3 φBX
Assertion ovnssle φvoln*XAvoln*XB

Proof

Step Hyp Ref Expression
1 ovnssle.1 φXFin
2 ovnssle.2 φAB
3 ovnssle.3 φBX
4 0le0 00
5 4 a1i φX=00
6 fveq2 X=voln*X=voln*
7 6 fveq1d X=voln*XA=voln*A
8 7 adantl φX=voln*XA=voln*A
9 2 adantr φX=AB
10 3 adantr φX=BX
11 simpr φX=X=
12 11 oveq2d φX=X=
13 10 12 sseqtrd φX=B
14 9 13 sstrd φX=A
15 14 ovn0val φX=voln*A=0
16 8 15 eqtrd φX=voln*XA=0
17 6 fveq1d X=voln*XB=voln*B
18 17 adantl φX=voln*XB=voln*B
19 13 ovn0val φX=voln*B=0
20 18 19 eqtrd φX=voln*XB=0
21 16 20 breq12d φX=voln*XAvoln*XB00
22 5 21 mpbird φX=voln*XAvoln*XB
23 1 adantr φ¬X=XFin
24 neqne ¬X=X
25 24 adantl φ¬X=X
26 2 adantr φ¬X=AB
27 3 adantr φ¬X=BX
28 eqid z*|i2XAjkX.ijkz=sum^jkXvol.ijk=z*|i2XAjkX.ijkz=sum^jkXvol.ijk
29 eqid z*|i2XBjkX.ijkz=sum^jkXvol.ijk=z*|i2XBjkX.ijkz=sum^jkXvol.ijk
30 23 25 26 27 28 29 ovnsslelem φ¬X=voln*XAvoln*XB
31 22 30 pm2.61dan φvoln*XAvoln*XB