Metamath Proof Explorer


Theorem ovnsslelem

Description: The (multidimensional, nonzero-dimensional) Lebesgue outer measure of a subset is less than the L.o.m. of the whole set. This is step (iii) of the proof of Proposition 115D (a) of Fremlin1 p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ovnsslelem.1 φ X Fin
ovnsslelem.2 φ X
ovnsslelem.3 φ A B
ovnsslelem.4 φ B X
ovnsslelem.5 M = z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k
ovnsslelem.6 N = z * | i 2 X B j k X . i j k z = sum^ j k X vol . i j k
Assertion ovnsslelem φ voln* X A voln* X B

Proof

Step Hyp Ref Expression
1 ovnsslelem.1 φ X Fin
2 ovnsslelem.2 φ X
3 ovnsslelem.3 φ A B
4 ovnsslelem.4 φ B X
5 ovnsslelem.5 M = z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k
6 ovnsslelem.6 N = z * | i 2 X B j k X . i j k z = sum^ j k X vol . i j k
7 3 adantr φ B j k X . i j k A B
8 simpr φ B j k X . i j k B j k X . i j k
9 7 8 sstrd φ B j k X . i j k A j k X . i j k
10 9 adantrr φ B j k X . i j k z = sum^ j k X vol . i j k A j k X . i j k
11 id z = sum^ j k X vol . i j k z = sum^ j k X vol . i j k
12 11 ad2antll φ B j k X . i j k z = sum^ j k X vol . i j k z = sum^ j k X vol . i j k
13 10 12 jca φ B j k X . i j k z = sum^ j k X vol . i j k A j k X . i j k z = sum^ j k X vol . i j k
14 13 ex φ B j k X . i j k z = sum^ j k X vol . i j k A j k X . i j k z = sum^ j k X vol . i j k
15 14 reximdv φ i 2 X B j k X . i j k z = sum^ j k X vol . i j k i 2 X A j k X . i j k z = sum^ j k X vol . i j k
16 15 ralrimivw φ z * i 2 X B j k X . i j k z = sum^ j k X vol . i j k i 2 X A j k X . i j k z = sum^ j k X vol . i j k
17 ss2rab z * | i 2 X B j k X . i j k z = sum^ j k X vol . i j k z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k z * i 2 X B j k X . i j k z = sum^ j k X vol . i j k i 2 X A j k X . i j k z = sum^ j k X vol . i j k
18 16 17 sylibr φ z * | i 2 X B j k X . i j k z = sum^ j k X vol . i j k z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k
19 6 a1i φ N = z * | i 2 X B j k X . i j k z = sum^ j k X vol . i j k
20 5 a1i φ M = z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k
21 19 20 sseq12d φ N M z * | i 2 X B j k X . i j k z = sum^ j k X vol . i j k z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k
22 18 21 mpbird φ N M
23 ssrab2 z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k *
24 5 23 eqsstri M *
25 24 a1i φ M *
26 infxrss N M M * sup M * < sup N * <
27 22 25 26 syl2anc φ sup M * < sup N * <
28 3 4 sstrd φ A X
29 1 2 28 5 ovnn0val φ voln* X A = sup M * <
30 1 2 4 6 ovnn0val φ voln* X B = sup N * <
31 29 30 breq12d φ voln* X A voln* X B sup M * < sup N * <
32 27 31 mpbird φ voln* X A voln* X B