Metamath Proof Explorer


Theorem ovnsslelem

Description: The (multidimensional, nonzero-dimensional) Lebesgue outer measure of a subset is less than the L.o.m. of the whole set. This is step (iii) of the proof of Proposition 115D (a) of Fremlin1 p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ovnsslelem.1 φ X Fin
ovnsslelem.2 φ X
ovnsslelem.3 φ A B
ovnsslelem.4 φ B X
ovnsslelem.5 M = z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k
ovnsslelem.6 N = z * | i 2 X B j k X . i j k z = sum^ j k X vol . i j k
Assertion ovnsslelem φ voln* X A voln* X B

Proof

Step Hyp Ref Expression
1 ovnsslelem.1 φ X Fin
2 ovnsslelem.2 φ X
3 ovnsslelem.3 φ A B
4 ovnsslelem.4 φ B X
5 ovnsslelem.5 M = z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k
6 ovnsslelem.6 N = z * | i 2 X B j k X . i j k z = sum^ j k X vol . i j k
7 3 adantr φ B j k X . i j k A B
8 simpr φ B j k X . i j k B j k X . i j k
9 7 8 sstrd φ B j k X . i j k A j k X . i j k
10 9 adantrr φ B j k X . i j k z = sum^ j k X vol . i j k A j k X . i j k
11 simprr φ B j k X . i j k z = sum^ j k X vol . i j k z = sum^ j k X vol . i j k
12 10 11 jca φ B j k X . i j k z = sum^ j k X vol . i j k A j k X . i j k z = sum^ j k X vol . i j k
13 12 ex φ B j k X . i j k z = sum^ j k X vol . i j k A j k X . i j k z = sum^ j k X vol . i j k
14 13 reximdv φ i 2 X B j k X . i j k z = sum^ j k X vol . i j k i 2 X A j k X . i j k z = sum^ j k X vol . i j k
15 14 adantr φ z * i 2 X B j k X . i j k z = sum^ j k X vol . i j k i 2 X A j k X . i j k z = sum^ j k X vol . i j k
16 15 ss2rabdv φ z * | i 2 X B j k X . i j k z = sum^ j k X vol . i j k z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k
17 16 6 5 3sstr4g φ N M
18 5 ssrab3 M *
19 infxrss N M M * inf M * < inf N * <
20 17 18 19 sylancl φ inf M * < inf N * <
21 3 4 sstrd φ A X
22 1 2 21 5 ovnn0val φ voln* X A = inf M * <
23 1 2 4 6 ovnn0val φ voln* X B = inf N * <
24 20 22 23 3brtr4d φ voln* X A voln* X B