Metamath Proof Explorer


Theorem ovnlerp

Description: The Lebesgue outer measure of a subset of multidimensional real numbers can always be approximated by the total outer measure of a cover of half-open (multidimensional) intervals. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ovnlerp.x φ X Fin
ovnlerp.n0 φ X
ovnlerp.a φ A X
ovnlerp.e φ E +
ovnlerp.m M = z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k
Assertion ovnlerp φ z M z voln* X A + 𝑒 E

Proof

Step Hyp Ref Expression
1 ovnlerp.x φ X Fin
2 ovnlerp.n0 φ X
3 ovnlerp.a φ A X
4 ovnlerp.e φ E +
5 ovnlerp.m M = z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k
6 nfv x φ
7 ssrab2 z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k *
8 5 7 eqsstri M *
9 8 a1i φ M *
10 1 3 5 ovnpnfelsup φ +∞ M
11 10 ne0d φ M
12 0red φ 0
13 1 3 5 ovnsupge0 φ M 0 +∞
14 0xr 0 *
15 14 a1i M 0 +∞ y M 0 *
16 pnfxr +∞ *
17 16 a1i M 0 +∞ y M +∞ *
18 ssel2 M 0 +∞ y M y 0 +∞
19 iccgelb 0 * +∞ * y 0 +∞ 0 y
20 15 17 18 19 syl3anc M 0 +∞ y M 0 y
21 20 ralrimiva M 0 +∞ y M 0 y
22 13 21 syl φ y M 0 y
23 breq1 x = 0 x y 0 y
24 23 ralbidv x = 0 y M x y y M 0 y
25 24 rspcev 0 y M 0 y x y M x y
26 12 22 25 syl2anc φ x y M x y
27 6 9 11 26 4 infrpge φ w M w sup M * < + 𝑒 E
28 nfv w φ
29 simp3 φ w M w sup M * < + 𝑒 E w sup M * < + 𝑒 E
30 1 2 3 5 ovnn0val φ voln* X A = sup M * <
31 30 eqcomd φ sup M * < = voln* X A
32 31 oveq1d φ sup M * < + 𝑒 E = voln* X A + 𝑒 E
33 32 3ad2ant1 φ w M w sup M * < + 𝑒 E sup M * < + 𝑒 E = voln* X A + 𝑒 E
34 29 33 breqtrd φ w M w sup M * < + 𝑒 E w voln* X A + 𝑒 E
35 34 3exp φ w M w sup M * < + 𝑒 E w voln* X A + 𝑒 E
36 28 35 reximdai φ w M w sup M * < + 𝑒 E w M w voln* X A + 𝑒 E
37 27 36 mpd φ w M w voln* X A + 𝑒 E
38 nfcv _ w M
39 nfrab1 _ z z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k
40 5 39 nfcxfr _ z M
41 nfv z w voln* X A + 𝑒 E
42 nfv w z voln* X A + 𝑒 E
43 breq1 w = z w voln* X A + 𝑒 E z voln* X A + 𝑒 E
44 38 40 41 42 43 cbvrexfw w M w voln* X A + 𝑒 E z M z voln* X A + 𝑒 E
45 37 44 sylib φ z M z voln* X A + 𝑒 E