Metamath Proof Explorer


Theorem ovnsupge0

Description: The set used in the definition of the Lebesgue outer measure is a subset of the nonnegative extended reals. This is a substep for (a)(i) of the proof of Proposition 115D (a) of Fremlin1 p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ovnsupge0.1 φXFin
ovnsupge0.2 φAX
ovnsupge0.3 M=z*|i2XAjkX.ijkz=sum^jkXvol.ijk
Assertion ovnsupge0 φM0+∞

Proof

Step Hyp Ref Expression
1 ovnsupge0.1 φXFin
2 ovnsupge0.2 φAX
3 ovnsupge0.3 M=z*|i2XAjkX.ijkz=sum^jkXvol.ijk
4 simp3 φi2Xz=sum^jkXvol.ijkz=sum^jkXvol.ijk
5 nnex V
6 5 a1i φi2XV
7 icossicc 0+∞0+∞
8 nfv kφi2Xj
9 1 ad2antrr φi2XjXFin
10 elmapi i2Xi:2X
11 10 ad2antlr φi2Xji:2X
12 simpr φi2Xjj
13 8 9 11 12 ovnprodcl φi2XjkXvol.ijk0+∞
14 7 13 sselid φi2XjkXvol.ijk0+∞
15 eqid jkXvol.ijk=jkXvol.ijk
16 14 15 fmptd φi2XjkXvol.ijk:0+∞
17 6 16 sge0cl φi2Xsum^jkXvol.ijk0+∞
18 17 3adant3 φi2Xz=sum^jkXvol.ijksum^jkXvol.ijk0+∞
19 4 18 eqeltrd φi2Xz=sum^jkXvol.ijkz0+∞
20 19 3adant3l φi2XAjkX.ijkz=sum^jkXvol.ijkz0+∞
21 20 3exp φi2XAjkX.ijkz=sum^jkXvol.ijkz0+∞
22 21 adantr φz*i2XAjkX.ijkz=sum^jkXvol.ijkz0+∞
23 22 rexlimdv φz*i2XAjkX.ijkz=sum^jkXvol.ijkz0+∞
24 23 ralrimiva φz*i2XAjkX.ijkz=sum^jkXvol.ijkz0+∞
25 rabss z*|i2XAjkX.ijkz=sum^jkXvol.ijk0+∞z*i2XAjkX.ijkz=sum^jkXvol.ijkz0+∞
26 24 25 sylibr φz*|i2XAjkX.ijkz=sum^jkXvol.ijk0+∞
27 3 26 eqsstrid φM0+∞