Metamath Proof Explorer


Theorem ovnsupge0

Description: The set used in the definition of the Lebesgue outer measure is a subset of the nonnegative extended reals. This is a substep for (a)(i) of the proof of Proposition 115D (a) of Fremlin1 p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ovnsupge0.1 φ X Fin
ovnsupge0.2 φ A X
ovnsupge0.3 M = z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k
Assertion ovnsupge0 φ M 0 +∞

Proof

Step Hyp Ref Expression
1 ovnsupge0.1 φ X Fin
2 ovnsupge0.2 φ A X
3 ovnsupge0.3 M = z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k
4 simp3 φ i 2 X z = sum^ j k X vol . i j k z = sum^ j k X vol . i j k
5 nnex V
6 5 a1i φ i 2 X V
7 icossicc 0 +∞ 0 +∞
8 nfv k φ i 2 X j
9 1 ad2antrr φ i 2 X j X Fin
10 elmapi i 2 X i : 2 X
11 10 ad2antlr φ i 2 X j i : 2 X
12 simpr φ i 2 X j j
13 8 9 11 12 ovnprodcl φ i 2 X j k X vol . i j k 0 +∞
14 7 13 sseldi φ i 2 X j k X vol . i j k 0 +∞
15 eqid j k X vol . i j k = j k X vol . i j k
16 14 15 fmptd φ i 2 X j k X vol . i j k : 0 +∞
17 6 16 sge0cl φ i 2 X sum^ j k X vol . i j k 0 +∞
18 17 3adant3 φ i 2 X z = sum^ j k X vol . i j k sum^ j k X vol . i j k 0 +∞
19 4 18 eqeltrd φ i 2 X z = sum^ j k X vol . i j k z 0 +∞
20 19 3adant3l φ i 2 X A j k X . i j k z = sum^ j k X vol . i j k z 0 +∞
21 20 3exp φ i 2 X A j k X . i j k z = sum^ j k X vol . i j k z 0 +∞
22 21 adantr φ z * i 2 X A j k X . i j k z = sum^ j k X vol . i j k z 0 +∞
23 22 rexlimdv φ z * i 2 X A j k X . i j k z = sum^ j k X vol . i j k z 0 +∞
24 23 ralrimiva φ z * i 2 X A j k X . i j k z = sum^ j k X vol . i j k z 0 +∞
25 rabss z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k 0 +∞ z * i 2 X A j k X . i j k z = sum^ j k X vol . i j k z 0 +∞
26 24 25 sylibr φ z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k 0 +∞
27 3 26 eqsstrid φ M 0 +∞