Description: The set used in the definition of the Lebesgue outer measure is a subset of the nonnegative extended reals. This is a substep for (a)(i) of the proof of Proposition 115D (a) of Fremlin1 p. 30. (Contributed by Glauco Siliprandi, 11-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ovnsupge0.1 | |
|
ovnsupge0.2 | |
||
ovnsupge0.3 | |
||
Assertion | ovnsupge0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovnsupge0.1 | |
|
2 | ovnsupge0.2 | |
|
3 | ovnsupge0.3 | |
|
4 | simp3 | |
|
5 | nnex | |
|
6 | 5 | a1i | |
7 | icossicc | |
|
8 | nfv | |
|
9 | 1 | ad2antrr | |
10 | elmapi | |
|
11 | 10 | ad2antlr | |
12 | simpr | |
|
13 | 8 9 11 12 | ovnprodcl | |
14 | 7 13 | sselid | |
15 | eqid | |
|
16 | 14 15 | fmptd | |
17 | 6 16 | sge0cl | |
18 | 17 | 3adant3 | |
19 | 4 18 | eqeltrd | |
20 | 19 | 3adant3l | |
21 | 20 | 3exp | |
22 | 21 | adantr | |
23 | 22 | rexlimdv | |
24 | 23 | ralrimiva | |
25 | rabss | |
|
26 | 24 25 | sylibr | |
27 | 3 26 | eqsstrid | |