Description: Given a subset of multidimensional reals and a set of half-open intervals that covers it, the Lebesgue outer measure of the set is bounded by the generalized sum of the pre-measure of the half-open intervals. The statement would also be true with X the empty set, but covers are not used for the zero-dimensional case. (Contributed by Glauco Siliprandi, 11-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ovnlecvr.x | |
|
ovnlecvr.n0 | |
||
ovnlecvr.l | |
||
ovnlecvr.i | |
||
ovnlecvr.ss | |
||
Assertion | ovnlecvr | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovnlecvr.x | |
|
2 | ovnlecvr.n0 | |
|
3 | ovnlecvr.l | |
|
4 | ovnlecvr.i | |
|
5 | ovnlecvr.ss | |
|
6 | 4 | ffvelcdmda | |
7 | elmapi | |
|
8 | 6 7 | syl | |
9 | 8 | hoissrrn | |
10 | 9 | ralrimiva | |
11 | iunss | |
|
12 | 10 11 | sylibr | |
13 | 5 12 | sstrd | |
14 | eqid | |
|
15 | 1 2 13 14 | ovnn0val | |
16 | ssrab2 | |
|
17 | 16 | a1i | |
18 | nnex | |
|
19 | 18 | a1i | |
20 | icossicc | |
|
21 | nfv | |
|
22 | 1 | adantr | |
23 | 21 22 3 8 | hoiprodcl2 | |
24 | 20 23 | sselid | |
25 | eqid | |
|
26 | 24 25 | fmptd | |
27 | 19 26 | sge0xrcl | |
28 | ovex | |
|
29 | 28 18 | pm3.2i | |
30 | elmapg | |
|
31 | 29 30 | ax-mp | |
32 | 4 31 | sylibr | |
33 | coeq2 | |
|
34 | 33 | fveq1d | |
35 | 34 | fveq2d | |
36 | 35 | prodeq2ad | |
37 | prodex | |
|
38 | 37 | a1i | |
39 | 3 36 6 38 | fvmptd3 | |
40 | 39 | mpteq2dva | |
41 | 40 | fveq2d | |
42 | 5 41 | jca | |
43 | nfv | |
|
44 | fveq1 | |
|
45 | 44 | coeq2d | |
46 | 45 | fveq1d | |
47 | 46 | adantr | |
48 | 43 47 | ixpeq2d | |
49 | 48 | iuneq2d | |
50 | 49 | sseq2d | |
51 | 46 | fveq2d | |
52 | 51 | prodeq2ad | |
53 | 52 | mpteq2dv | |
54 | 53 | fveq2d | |
55 | 54 | eqeq2d | |
56 | 50 55 | anbi12d | |
57 | 56 | rspcev | |
58 | 32 42 57 | syl2anc | |
59 | 27 58 | jca | |
60 | eqeq1 | |
|
61 | 60 | anbi2d | |
62 | 61 | rexbidv | |
63 | 62 | elrab | |
64 | 59 63 | sylibr | |
65 | infxrlb | |
|
66 | 17 64 65 | syl2anc | |
67 | 15 66 | eqbrtrd | |