Metamath Proof Explorer


Theorem ovnpnfelsup

Description: +oo is an element of the set used in the definition of the Lebesgue outer measure. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ovnpnfelsup.1 φ X Fin
ovnpnfelsup.2 φ A X
ovnpnfelsup.3 M = z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k
Assertion ovnpnfelsup φ +∞ M

Proof

Step Hyp Ref Expression
1 ovnpnfelsup.1 φ X Fin
2 ovnpnfelsup.2 φ A X
3 ovnpnfelsup.3 M = z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k
4 pnfxr +∞ *
5 4 a1i φ +∞ *
6 1 2 hoicvrrex φ i 2 X A j k X . i j k +∞ = sum^ j k X vol . i j k
7 5 6 jca φ +∞ * i 2 X A j k X . i j k +∞ = sum^ j k X vol . i j k
8 eqeq1 z = +∞ z = sum^ j k X vol . i j k +∞ = sum^ j k X vol . i j k
9 8 anbi2d z = +∞ A j k X . i j k z = sum^ j k X vol . i j k A j k X . i j k +∞ = sum^ j k X vol . i j k
10 9 rexbidv z = +∞ i 2 X A j k X . i j k z = sum^ j k X vol . i j k i 2 X A j k X . i j k +∞ = sum^ j k X vol . i j k
11 10 elrab +∞ z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k +∞ * i 2 X A j k X . i j k +∞ = sum^ j k X vol . i j k
12 7 11 sylibr φ +∞ z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k
13 3 eqcomi z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k = M
14 13 a1i φ z * | i 2 X A j k X . i j k z = sum^ j k X vol . i j k = M
15 12 14 eleqtrd φ +∞ M