Metamath Proof Explorer


Theorem ovnpnfelsup

Description: +oo is an element of the set used in the definition of the Lebesgue outer measure. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ovnpnfelsup.1
|- ( ph -> X e. Fin )
ovnpnfelsup.2
|- ( ph -> A C_ ( RR ^m X ) )
ovnpnfelsup.3
|- M = { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) }
Assertion ovnpnfelsup
|- ( ph -> +oo e. M )

Proof

Step Hyp Ref Expression
1 ovnpnfelsup.1
 |-  ( ph -> X e. Fin )
2 ovnpnfelsup.2
 |-  ( ph -> A C_ ( RR ^m X ) )
3 ovnpnfelsup.3
 |-  M = { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) }
4 pnfxr
 |-  +oo e. RR*
5 4 a1i
 |-  ( ph -> +oo e. RR* )
6 1 2 hoicvrrex
 |-  ( ph -> E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ +oo = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) )
7 5 6 jca
 |-  ( ph -> ( +oo e. RR* /\ E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ +oo = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) )
8 eqeq1
 |-  ( z = +oo -> ( z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) <-> +oo = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) )
9 8 anbi2d
 |-  ( z = +oo -> ( ( A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) <-> ( A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ +oo = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) )
10 9 rexbidv
 |-  ( z = +oo -> ( E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) <-> E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ +oo = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) )
11 10 elrab
 |-  ( +oo e. { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) } <-> ( +oo e. RR* /\ E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ +oo = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) ) )
12 7 11 sylibr
 |-  ( ph -> +oo e. { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) } )
13 3 eqcomi
 |-  { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) } = M
14 13 a1i
 |-  ( ph -> { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) } = M )
15 12 14 eleqtrd
 |-  ( ph -> +oo e. M )