Step |
Hyp |
Ref |
Expression |
1 |
|
ovnlecvr.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
2 |
|
ovnlecvr.n0 |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
3 |
|
ovnlecvr.l |
⊢ 𝐿 = ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑘 ) ) ) |
4 |
|
ovnlecvr.i |
⊢ ( 𝜑 → 𝐼 : ℕ ⟶ ( ( ℝ × ℝ ) ↑m 𝑋 ) ) |
5 |
|
ovnlecvr.ss |
⊢ ( 𝜑 → 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
6 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐼 ‘ 𝑗 ) ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ) |
7 |
|
elmapi |
⊢ ( ( 𝐼 ‘ 𝑗 ) ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) → ( 𝐼 ‘ 𝑗 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) |
8 |
6 7
|
syl |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐼 ‘ 𝑗 ) : 𝑋 ⟶ ( ℝ × ℝ ) ) |
9 |
8
|
hoissrrn |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ⊆ ( ℝ ↑m 𝑋 ) ) |
10 |
9
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ⊆ ( ℝ ↑m 𝑋 ) ) |
11 |
|
iunss |
⊢ ( ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ⊆ ( ℝ ↑m 𝑋 ) ↔ ∀ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ⊆ ( ℝ ↑m 𝑋 ) ) |
12 |
10 11
|
sylibr |
⊢ ( 𝜑 → ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ⊆ ( ℝ ↑m 𝑋 ) ) |
13 |
5 12
|
sstrd |
⊢ ( 𝜑 → 𝐴 ⊆ ( ℝ ↑m 𝑋 ) ) |
14 |
|
eqid |
⊢ { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } = { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } |
15 |
1 2 13 14
|
ovnn0val |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) = inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } , ℝ* , < ) ) |
16 |
|
ssrab2 |
⊢ { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } ⊆ ℝ* |
17 |
16
|
a1i |
⊢ ( 𝜑 → { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } ⊆ ℝ* ) |
18 |
|
nnex |
⊢ ℕ ∈ V |
19 |
18
|
a1i |
⊢ ( 𝜑 → ℕ ∈ V ) |
20 |
|
icossicc |
⊢ ( 0 [,) +∞ ) ⊆ ( 0 [,] +∞ ) |
21 |
|
nfv |
⊢ Ⅎ 𝑘 ( 𝜑 ∧ 𝑗 ∈ ℕ ) |
22 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → 𝑋 ∈ Fin ) |
23 |
21 22 3 8
|
hoiprodcl2 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐿 ‘ ( 𝐼 ‘ 𝑗 ) ) ∈ ( 0 [,) +∞ ) ) |
24 |
20 23
|
sselid |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐿 ‘ ( 𝐼 ‘ 𝑗 ) ) ∈ ( 0 [,] +∞ ) ) |
25 |
|
eqid |
⊢ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝐼 ‘ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝐼 ‘ 𝑗 ) ) ) |
26 |
24 25
|
fmptd |
⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝐼 ‘ 𝑗 ) ) ) : ℕ ⟶ ( 0 [,] +∞ ) ) |
27 |
19 26
|
sge0xrcl |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝐼 ‘ 𝑗 ) ) ) ) ∈ ℝ* ) |
28 |
|
ovex |
⊢ ( ( ℝ × ℝ ) ↑m 𝑋 ) ∈ V |
29 |
28 18
|
pm3.2i |
⊢ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ∈ V ∧ ℕ ∈ V ) |
30 |
|
elmapg |
⊢ ( ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ∈ V ∧ ℕ ∈ V ) → ( 𝐼 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ↔ 𝐼 : ℕ ⟶ ( ( ℝ × ℝ ) ↑m 𝑋 ) ) ) |
31 |
29 30
|
ax-mp |
⊢ ( 𝐼 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ↔ 𝐼 : ℕ ⟶ ( ( ℝ × ℝ ) ↑m 𝑋 ) ) |
32 |
4 31
|
sylibr |
⊢ ( 𝜑 → 𝐼 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ) |
33 |
|
coeq2 |
⊢ ( 𝑖 = ( 𝐼 ‘ 𝑗 ) → ( [,) ∘ 𝑖 ) = ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ) |
34 |
33
|
fveq1d |
⊢ ( 𝑖 = ( 𝐼 ‘ 𝑗 ) → ( ( [,) ∘ 𝑖 ) ‘ 𝑘 ) = ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
35 |
34
|
fveq2d |
⊢ ( 𝑖 = ( 𝐼 ‘ 𝑗 ) → ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑘 ) ) = ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
36 |
35
|
prodeq2ad |
⊢ ( 𝑖 = ( 𝐼 ‘ 𝑗 ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑘 ) ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
37 |
|
prodex |
⊢ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ∈ V |
38 |
37
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ∈ V ) |
39 |
3 36 6 38
|
fvmptd3 |
⊢ ( ( 𝜑 ∧ 𝑗 ∈ ℕ ) → ( 𝐿 ‘ ( 𝐼 ‘ 𝑗 ) ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
40 |
39
|
mpteq2dva |
⊢ ( 𝜑 → ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝐼 ‘ 𝑗 ) ) ) = ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
41 |
40
|
fveq2d |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝐼 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) |
42 |
5 41
|
jca |
⊢ ( 𝜑 → ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝐼 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) |
43 |
|
nfv |
⊢ Ⅎ 𝑘 𝑖 = 𝐼 |
44 |
|
fveq1 |
⊢ ( 𝑖 = 𝐼 → ( 𝑖 ‘ 𝑗 ) = ( 𝐼 ‘ 𝑗 ) ) |
45 |
44
|
coeq2d |
⊢ ( 𝑖 = 𝐼 → ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) = ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ) |
46 |
45
|
fveq1d |
⊢ ( 𝑖 = 𝐼 → ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) = ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
47 |
46
|
adantr |
⊢ ( ( 𝑖 = 𝐼 ∧ 𝑘 ∈ 𝑋 ) → ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) = ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
48 |
43 47
|
ixpeq2d |
⊢ ( 𝑖 = 𝐼 → X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) = X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
49 |
48
|
iuneq2d |
⊢ ( 𝑖 = 𝐼 → ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) = ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) |
50 |
49
|
sseq2d |
⊢ ( 𝑖 = 𝐼 → ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ↔ 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
51 |
46
|
fveq2d |
⊢ ( 𝑖 = 𝐼 → ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
52 |
51
|
prodeq2ad |
⊢ ( 𝑖 = 𝐼 → ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) = ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) |
53 |
52
|
mpteq2dv |
⊢ ( 𝑖 = 𝐼 → ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) = ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) |
54 |
53
|
fveq2d |
⊢ ( 𝑖 = 𝐼 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) |
55 |
54
|
eqeq2d |
⊢ ( 𝑖 = 𝐼 → ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝐼 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ↔ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝐼 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) |
56 |
50 55
|
anbi12d |
⊢ ( 𝑖 = 𝐼 → ( ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝐼 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ↔ ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝐼 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
57 |
56
|
rspcev |
⊢ ( ( 𝐼 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∧ ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝐼 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝐼 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) → ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝐼 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) |
58 |
32 42 57
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝐼 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) |
59 |
27 58
|
jca |
⊢ ( 𝜑 → ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝐼 ‘ 𝑗 ) ) ) ) ∈ ℝ* ∧ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝐼 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
60 |
|
eqeq1 |
⊢ ( 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝐼 ‘ 𝑗 ) ) ) ) → ( 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ↔ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝐼 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) |
61 |
60
|
anbi2d |
⊢ ( 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝐼 ‘ 𝑗 ) ) ) ) → ( ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ↔ ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝐼 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
62 |
61
|
rexbidv |
⊢ ( 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝐼 ‘ 𝑗 ) ) ) ) → ( ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ↔ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝐼 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
63 |
62
|
elrab |
⊢ ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝐼 ‘ 𝑗 ) ) ) ) ∈ { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } ↔ ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝐼 ‘ 𝑗 ) ) ) ) ∈ ℝ* ∧ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝐼 ‘ 𝑗 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) ) ) |
64 |
59 63
|
sylibr |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝐼 ‘ 𝑗 ) ) ) ) ∈ { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } ) |
65 |
|
infxrlb |
⊢ ( ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } ⊆ ℝ* ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝐼 ‘ 𝑗 ) ) ) ) ∈ { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } ) → inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } , ℝ* , < ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝐼 ‘ 𝑗 ) ) ) ) ) |
66 |
17 64 65
|
syl2anc |
⊢ ( 𝜑 → inf ( { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } , ℝ* , < ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝐼 ‘ 𝑗 ) ) ) ) ) |
67 |
15 66
|
eqbrtrd |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) ≤ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( 𝐿 ‘ ( 𝐼 ‘ 𝑗 ) ) ) ) ) |