Step |
Hyp |
Ref |
Expression |
1 |
|
ovnlerp.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
2 |
|
ovnlerp.n0 |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
3 |
|
ovnlerp.a |
⊢ ( 𝜑 → 𝐴 ⊆ ( ℝ ↑m 𝑋 ) ) |
4 |
|
ovnlerp.e |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
5 |
|
ovnlerp.m |
⊢ 𝑀 = { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } |
6 |
|
nfv |
⊢ Ⅎ 𝑥 𝜑 |
7 |
|
ssrab2 |
⊢ { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } ⊆ ℝ* |
8 |
5 7
|
eqsstri |
⊢ 𝑀 ⊆ ℝ* |
9 |
8
|
a1i |
⊢ ( 𝜑 → 𝑀 ⊆ ℝ* ) |
10 |
1 3 5
|
ovnpnfelsup |
⊢ ( 𝜑 → +∞ ∈ 𝑀 ) |
11 |
10
|
ne0d |
⊢ ( 𝜑 → 𝑀 ≠ ∅ ) |
12 |
|
0red |
⊢ ( 𝜑 → 0 ∈ ℝ ) |
13 |
1 3 5
|
ovnsupge0 |
⊢ ( 𝜑 → 𝑀 ⊆ ( 0 [,] +∞ ) ) |
14 |
|
0xr |
⊢ 0 ∈ ℝ* |
15 |
14
|
a1i |
⊢ ( ( 𝑀 ⊆ ( 0 [,] +∞ ) ∧ 𝑦 ∈ 𝑀 ) → 0 ∈ ℝ* ) |
16 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
17 |
16
|
a1i |
⊢ ( ( 𝑀 ⊆ ( 0 [,] +∞ ) ∧ 𝑦 ∈ 𝑀 ) → +∞ ∈ ℝ* ) |
18 |
|
ssel2 |
⊢ ( ( 𝑀 ⊆ ( 0 [,] +∞ ) ∧ 𝑦 ∈ 𝑀 ) → 𝑦 ∈ ( 0 [,] +∞ ) ) |
19 |
|
iccgelb |
⊢ ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ* ∧ 𝑦 ∈ ( 0 [,] +∞ ) ) → 0 ≤ 𝑦 ) |
20 |
15 17 18 19
|
syl3anc |
⊢ ( ( 𝑀 ⊆ ( 0 [,] +∞ ) ∧ 𝑦 ∈ 𝑀 ) → 0 ≤ 𝑦 ) |
21 |
20
|
ralrimiva |
⊢ ( 𝑀 ⊆ ( 0 [,] +∞ ) → ∀ 𝑦 ∈ 𝑀 0 ≤ 𝑦 ) |
22 |
13 21
|
syl |
⊢ ( 𝜑 → ∀ 𝑦 ∈ 𝑀 0 ≤ 𝑦 ) |
23 |
|
breq1 |
⊢ ( 𝑥 = 0 → ( 𝑥 ≤ 𝑦 ↔ 0 ≤ 𝑦 ) ) |
24 |
23
|
ralbidv |
⊢ ( 𝑥 = 0 → ( ∀ 𝑦 ∈ 𝑀 𝑥 ≤ 𝑦 ↔ ∀ 𝑦 ∈ 𝑀 0 ≤ 𝑦 ) ) |
25 |
24
|
rspcev |
⊢ ( ( 0 ∈ ℝ ∧ ∀ 𝑦 ∈ 𝑀 0 ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑀 𝑥 ≤ 𝑦 ) |
26 |
12 22 25
|
syl2anc |
⊢ ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦 ∈ 𝑀 𝑥 ≤ 𝑦 ) |
27 |
6 9 11 26 4
|
infrpge |
⊢ ( 𝜑 → ∃ 𝑤 ∈ 𝑀 𝑤 ≤ ( inf ( 𝑀 , ℝ* , < ) +𝑒 𝐸 ) ) |
28 |
|
nfv |
⊢ Ⅎ 𝑤 𝜑 |
29 |
|
simp3 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑀 ∧ 𝑤 ≤ ( inf ( 𝑀 , ℝ* , < ) +𝑒 𝐸 ) ) → 𝑤 ≤ ( inf ( 𝑀 , ℝ* , < ) +𝑒 𝐸 ) ) |
30 |
1 2 3 5
|
ovnn0val |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) = inf ( 𝑀 , ℝ* , < ) ) |
31 |
30
|
eqcomd |
⊢ ( 𝜑 → inf ( 𝑀 , ℝ* , < ) = ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) ) |
32 |
31
|
oveq1d |
⊢ ( 𝜑 → ( inf ( 𝑀 , ℝ* , < ) +𝑒 𝐸 ) = ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) |
33 |
32
|
3ad2ant1 |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑀 ∧ 𝑤 ≤ ( inf ( 𝑀 , ℝ* , < ) +𝑒 𝐸 ) ) → ( inf ( 𝑀 , ℝ* , < ) +𝑒 𝐸 ) = ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) |
34 |
29 33
|
breqtrd |
⊢ ( ( 𝜑 ∧ 𝑤 ∈ 𝑀 ∧ 𝑤 ≤ ( inf ( 𝑀 , ℝ* , < ) +𝑒 𝐸 ) ) → 𝑤 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) |
35 |
34
|
3exp |
⊢ ( 𝜑 → ( 𝑤 ∈ 𝑀 → ( 𝑤 ≤ ( inf ( 𝑀 , ℝ* , < ) +𝑒 𝐸 ) → 𝑤 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ) ) |
36 |
28 35
|
reximdai |
⊢ ( 𝜑 → ( ∃ 𝑤 ∈ 𝑀 𝑤 ≤ ( inf ( 𝑀 , ℝ* , < ) +𝑒 𝐸 ) → ∃ 𝑤 ∈ 𝑀 𝑤 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ) |
37 |
27 36
|
mpd |
⊢ ( 𝜑 → ∃ 𝑤 ∈ 𝑀 𝑤 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) |
38 |
|
nfcv |
⊢ Ⅎ 𝑤 𝑀 |
39 |
|
nfrab1 |
⊢ Ⅎ 𝑧 { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 ⊆ ∪ 𝑗 ∈ ℕ X 𝑘 ∈ 𝑋 ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖 ‘ 𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } |
40 |
5 39
|
nfcxfr |
⊢ Ⅎ 𝑧 𝑀 |
41 |
|
nfv |
⊢ Ⅎ 𝑧 𝑤 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) |
42 |
|
nfv |
⊢ Ⅎ 𝑤 𝑧 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) |
43 |
|
breq1 |
⊢ ( 𝑤 = 𝑧 → ( 𝑤 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ↔ 𝑧 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ) |
44 |
38 40 41 42 43
|
cbvrexfw |
⊢ ( ∃ 𝑤 ∈ 𝑀 𝑤 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ↔ ∃ 𝑧 ∈ 𝑀 𝑧 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) |
45 |
37 44
|
sylib |
⊢ ( 𝜑 → ∃ 𝑧 ∈ 𝑀 𝑧 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) |