Metamath Proof Explorer


Theorem ovnlerp

Description: The Lebesgue outer measure of a subset of multidimensional real numbers can always be approximated by the total outer measure of a cover of half-open (multidimensional) intervals. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ovnlerp.x ( 𝜑𝑋 ∈ Fin )
ovnlerp.n0 ( 𝜑𝑋 ≠ ∅ )
ovnlerp.a ( 𝜑𝐴 ⊆ ( ℝ ↑m 𝑋 ) )
ovnlerp.e ( 𝜑𝐸 ∈ ℝ+ )
ovnlerp.m 𝑀 = { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 𝑗 ∈ ℕ X 𝑘𝑋 ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) }
Assertion ovnlerp ( 𝜑 → ∃ 𝑧𝑀 𝑧 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) )

Proof

Step Hyp Ref Expression
1 ovnlerp.x ( 𝜑𝑋 ∈ Fin )
2 ovnlerp.n0 ( 𝜑𝑋 ≠ ∅ )
3 ovnlerp.a ( 𝜑𝐴 ⊆ ( ℝ ↑m 𝑋 ) )
4 ovnlerp.e ( 𝜑𝐸 ∈ ℝ+ )
5 ovnlerp.m 𝑀 = { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 𝑗 ∈ ℕ X 𝑘𝑋 ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) }
6 nfv 𝑥 𝜑
7 ssrab2 { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 𝑗 ∈ ℕ X 𝑘𝑋 ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) } ⊆ ℝ*
8 5 7 eqsstri 𝑀 ⊆ ℝ*
9 8 a1i ( 𝜑𝑀 ⊆ ℝ* )
10 1 3 5 ovnpnfelsup ( 𝜑 → +∞ ∈ 𝑀 )
11 10 ne0d ( 𝜑𝑀 ≠ ∅ )
12 0red ( 𝜑 → 0 ∈ ℝ )
13 1 3 5 ovnsupge0 ( 𝜑𝑀 ⊆ ( 0 [,] +∞ ) )
14 0xr 0 ∈ ℝ*
15 14 a1i ( ( 𝑀 ⊆ ( 0 [,] +∞ ) ∧ 𝑦𝑀 ) → 0 ∈ ℝ* )
16 pnfxr +∞ ∈ ℝ*
17 16 a1i ( ( 𝑀 ⊆ ( 0 [,] +∞ ) ∧ 𝑦𝑀 ) → +∞ ∈ ℝ* )
18 ssel2 ( ( 𝑀 ⊆ ( 0 [,] +∞ ) ∧ 𝑦𝑀 ) → 𝑦 ∈ ( 0 [,] +∞ ) )
19 iccgelb ( ( 0 ∈ ℝ* ∧ +∞ ∈ ℝ*𝑦 ∈ ( 0 [,] +∞ ) ) → 0 ≤ 𝑦 )
20 15 17 18 19 syl3anc ( ( 𝑀 ⊆ ( 0 [,] +∞ ) ∧ 𝑦𝑀 ) → 0 ≤ 𝑦 )
21 20 ralrimiva ( 𝑀 ⊆ ( 0 [,] +∞ ) → ∀ 𝑦𝑀 0 ≤ 𝑦 )
22 13 21 syl ( 𝜑 → ∀ 𝑦𝑀 0 ≤ 𝑦 )
23 breq1 ( 𝑥 = 0 → ( 𝑥𝑦 ↔ 0 ≤ 𝑦 ) )
24 23 ralbidv ( 𝑥 = 0 → ( ∀ 𝑦𝑀 𝑥𝑦 ↔ ∀ 𝑦𝑀 0 ≤ 𝑦 ) )
25 24 rspcev ( ( 0 ∈ ℝ ∧ ∀ 𝑦𝑀 0 ≤ 𝑦 ) → ∃ 𝑥 ∈ ℝ ∀ 𝑦𝑀 𝑥𝑦 )
26 12 22 25 syl2anc ( 𝜑 → ∃ 𝑥 ∈ ℝ ∀ 𝑦𝑀 𝑥𝑦 )
27 6 9 11 26 4 infrpge ( 𝜑 → ∃ 𝑤𝑀 𝑤 ≤ ( inf ( 𝑀 , ℝ* , < ) +𝑒 𝐸 ) )
28 nfv 𝑤 𝜑
29 simp3 ( ( 𝜑𝑤𝑀𝑤 ≤ ( inf ( 𝑀 , ℝ* , < ) +𝑒 𝐸 ) ) → 𝑤 ≤ ( inf ( 𝑀 , ℝ* , < ) +𝑒 𝐸 ) )
30 1 2 3 5 ovnn0val ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) = inf ( 𝑀 , ℝ* , < ) )
31 30 eqcomd ( 𝜑 → inf ( 𝑀 , ℝ* , < ) = ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) )
32 31 oveq1d ( 𝜑 → ( inf ( 𝑀 , ℝ* , < ) +𝑒 𝐸 ) = ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) )
33 32 3ad2ant1 ( ( 𝜑𝑤𝑀𝑤 ≤ ( inf ( 𝑀 , ℝ* , < ) +𝑒 𝐸 ) ) → ( inf ( 𝑀 , ℝ* , < ) +𝑒 𝐸 ) = ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) )
34 29 33 breqtrd ( ( 𝜑𝑤𝑀𝑤 ≤ ( inf ( 𝑀 , ℝ* , < ) +𝑒 𝐸 ) ) → 𝑤 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) )
35 34 3exp ( 𝜑 → ( 𝑤𝑀 → ( 𝑤 ≤ ( inf ( 𝑀 , ℝ* , < ) +𝑒 𝐸 ) → 𝑤 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) ) )
36 28 35 reximdai ( 𝜑 → ( ∃ 𝑤𝑀 𝑤 ≤ ( inf ( 𝑀 , ℝ* , < ) +𝑒 𝐸 ) → ∃ 𝑤𝑀 𝑤 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) )
37 27 36 mpd ( 𝜑 → ∃ 𝑤𝑀 𝑤 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) )
38 nfcv 𝑤 𝑀
39 nfrab1 𝑧 { 𝑧 ∈ ℝ* ∣ ∃ 𝑖 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ( 𝐴 𝑗 ∈ ℕ X 𝑘𝑋 ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ∧ 𝑧 = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ∏ 𝑘𝑋 ( vol ‘ ( ( [,) ∘ ( 𝑖𝑗 ) ) ‘ 𝑘 ) ) ) ) ) }
40 5 39 nfcxfr 𝑧 𝑀
41 nfv 𝑧 𝑤 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 )
42 nfv 𝑤 𝑧 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 )
43 breq1 ( 𝑤 = 𝑧 → ( 𝑤 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ↔ 𝑧 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ) )
44 38 40 41 42 43 cbvrexfw ( ∃ 𝑤𝑀 𝑤 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) ↔ ∃ 𝑧𝑀 𝑧 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) )
45 37 44 sylib ( 𝜑 → ∃ 𝑧𝑀 𝑧 ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 𝐸 ) )