| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovnssle.1 |
|- ( ph -> X e. Fin ) |
| 2 |
|
ovnssle.2 |
|- ( ph -> A C_ B ) |
| 3 |
|
ovnssle.3 |
|- ( ph -> B C_ ( RR ^m X ) ) |
| 4 |
|
0le0 |
|- 0 <_ 0 |
| 5 |
4
|
a1i |
|- ( ( ph /\ X = (/) ) -> 0 <_ 0 ) |
| 6 |
|
fveq2 |
|- ( X = (/) -> ( voln* ` X ) = ( voln* ` (/) ) ) |
| 7 |
6
|
fveq1d |
|- ( X = (/) -> ( ( voln* ` X ) ` A ) = ( ( voln* ` (/) ) ` A ) ) |
| 8 |
7
|
adantl |
|- ( ( ph /\ X = (/) ) -> ( ( voln* ` X ) ` A ) = ( ( voln* ` (/) ) ` A ) ) |
| 9 |
2
|
adantr |
|- ( ( ph /\ X = (/) ) -> A C_ B ) |
| 10 |
3
|
adantr |
|- ( ( ph /\ X = (/) ) -> B C_ ( RR ^m X ) ) |
| 11 |
|
simpr |
|- ( ( ph /\ X = (/) ) -> X = (/) ) |
| 12 |
11
|
oveq2d |
|- ( ( ph /\ X = (/) ) -> ( RR ^m X ) = ( RR ^m (/) ) ) |
| 13 |
10 12
|
sseqtrd |
|- ( ( ph /\ X = (/) ) -> B C_ ( RR ^m (/) ) ) |
| 14 |
9 13
|
sstrd |
|- ( ( ph /\ X = (/) ) -> A C_ ( RR ^m (/) ) ) |
| 15 |
14
|
ovn0val |
|- ( ( ph /\ X = (/) ) -> ( ( voln* ` (/) ) ` A ) = 0 ) |
| 16 |
8 15
|
eqtrd |
|- ( ( ph /\ X = (/) ) -> ( ( voln* ` X ) ` A ) = 0 ) |
| 17 |
6
|
fveq1d |
|- ( X = (/) -> ( ( voln* ` X ) ` B ) = ( ( voln* ` (/) ) ` B ) ) |
| 18 |
17
|
adantl |
|- ( ( ph /\ X = (/) ) -> ( ( voln* ` X ) ` B ) = ( ( voln* ` (/) ) ` B ) ) |
| 19 |
13
|
ovn0val |
|- ( ( ph /\ X = (/) ) -> ( ( voln* ` (/) ) ` B ) = 0 ) |
| 20 |
18 19
|
eqtrd |
|- ( ( ph /\ X = (/) ) -> ( ( voln* ` X ) ` B ) = 0 ) |
| 21 |
16 20
|
breq12d |
|- ( ( ph /\ X = (/) ) -> ( ( ( voln* ` X ) ` A ) <_ ( ( voln* ` X ) ` B ) <-> 0 <_ 0 ) ) |
| 22 |
5 21
|
mpbird |
|- ( ( ph /\ X = (/) ) -> ( ( voln* ` X ) ` A ) <_ ( ( voln* ` X ) ` B ) ) |
| 23 |
1
|
adantr |
|- ( ( ph /\ -. X = (/) ) -> X e. Fin ) |
| 24 |
|
neqne |
|- ( -. X = (/) -> X =/= (/) ) |
| 25 |
24
|
adantl |
|- ( ( ph /\ -. X = (/) ) -> X =/= (/) ) |
| 26 |
2
|
adantr |
|- ( ( ph /\ -. X = (/) ) -> A C_ B ) |
| 27 |
3
|
adantr |
|- ( ( ph /\ -. X = (/) ) -> B C_ ( RR ^m X ) ) |
| 28 |
|
eqid |
|- { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) } = { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) } |
| 29 |
|
eqid |
|- { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( B C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) } = { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( B C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) } |
| 30 |
23 25 26 27 28 29
|
ovnsslelem |
|- ( ( ph /\ -. X = (/) ) -> ( ( voln* ` X ) ` A ) <_ ( ( voln* ` X ) ` B ) ) |
| 31 |
22 30
|
pm2.61dan |
|- ( ph -> ( ( voln* ` X ) ` A ) <_ ( ( voln* ` X ) ` B ) ) |