Step |
Hyp |
Ref |
Expression |
1 |
|
ovnssle.1 |
|- ( ph -> X e. Fin ) |
2 |
|
ovnssle.2 |
|- ( ph -> A C_ B ) |
3 |
|
ovnssle.3 |
|- ( ph -> B C_ ( RR ^m X ) ) |
4 |
|
0le0 |
|- 0 <_ 0 |
5 |
4
|
a1i |
|- ( ( ph /\ X = (/) ) -> 0 <_ 0 ) |
6 |
|
fveq2 |
|- ( X = (/) -> ( voln* ` X ) = ( voln* ` (/) ) ) |
7 |
6
|
fveq1d |
|- ( X = (/) -> ( ( voln* ` X ) ` A ) = ( ( voln* ` (/) ) ` A ) ) |
8 |
7
|
adantl |
|- ( ( ph /\ X = (/) ) -> ( ( voln* ` X ) ` A ) = ( ( voln* ` (/) ) ` A ) ) |
9 |
2
|
adantr |
|- ( ( ph /\ X = (/) ) -> A C_ B ) |
10 |
3
|
adantr |
|- ( ( ph /\ X = (/) ) -> B C_ ( RR ^m X ) ) |
11 |
|
simpr |
|- ( ( ph /\ X = (/) ) -> X = (/) ) |
12 |
11
|
oveq2d |
|- ( ( ph /\ X = (/) ) -> ( RR ^m X ) = ( RR ^m (/) ) ) |
13 |
10 12
|
sseqtrd |
|- ( ( ph /\ X = (/) ) -> B C_ ( RR ^m (/) ) ) |
14 |
9 13
|
sstrd |
|- ( ( ph /\ X = (/) ) -> A C_ ( RR ^m (/) ) ) |
15 |
14
|
ovn0val |
|- ( ( ph /\ X = (/) ) -> ( ( voln* ` (/) ) ` A ) = 0 ) |
16 |
8 15
|
eqtrd |
|- ( ( ph /\ X = (/) ) -> ( ( voln* ` X ) ` A ) = 0 ) |
17 |
6
|
fveq1d |
|- ( X = (/) -> ( ( voln* ` X ) ` B ) = ( ( voln* ` (/) ) ` B ) ) |
18 |
17
|
adantl |
|- ( ( ph /\ X = (/) ) -> ( ( voln* ` X ) ` B ) = ( ( voln* ` (/) ) ` B ) ) |
19 |
13
|
ovn0val |
|- ( ( ph /\ X = (/) ) -> ( ( voln* ` (/) ) ` B ) = 0 ) |
20 |
18 19
|
eqtrd |
|- ( ( ph /\ X = (/) ) -> ( ( voln* ` X ) ` B ) = 0 ) |
21 |
16 20
|
breq12d |
|- ( ( ph /\ X = (/) ) -> ( ( ( voln* ` X ) ` A ) <_ ( ( voln* ` X ) ` B ) <-> 0 <_ 0 ) ) |
22 |
5 21
|
mpbird |
|- ( ( ph /\ X = (/) ) -> ( ( voln* ` X ) ` A ) <_ ( ( voln* ` X ) ` B ) ) |
23 |
1
|
adantr |
|- ( ( ph /\ -. X = (/) ) -> X e. Fin ) |
24 |
|
neqne |
|- ( -. X = (/) -> X =/= (/) ) |
25 |
24
|
adantl |
|- ( ( ph /\ -. X = (/) ) -> X =/= (/) ) |
26 |
2
|
adantr |
|- ( ( ph /\ -. X = (/) ) -> A C_ B ) |
27 |
3
|
adantr |
|- ( ( ph /\ -. X = (/) ) -> B C_ ( RR ^m X ) ) |
28 |
|
eqid |
|- { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) } = { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( A C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) } |
29 |
|
eqid |
|- { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( B C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) } = { z e. RR* | E. i e. ( ( ( RR X. RR ) ^m X ) ^m NN ) ( B C_ U_ j e. NN X_ k e. X ( ( [,) o. ( i ` j ) ) ` k ) /\ z = ( sum^ ` ( j e. NN |-> prod_ k e. X ( vol ` ( ( [,) o. ( i ` j ) ) ` k ) ) ) ) ) } |
30 |
23 25 26 27 28 29
|
ovnsslelem |
|- ( ( ph /\ -. X = (/) ) -> ( ( voln* ` X ) ` A ) <_ ( ( voln* ` X ) ` B ) ) |
31 |
22 30
|
pm2.61dan |
|- ( ph -> ( ( voln* ` X ) ` A ) <_ ( ( voln* ` X ) ` B ) ) |