| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmvon.x |
|- ( ph -> X e. Fin ) |
| 2 |
1
|
vonval |
|- ( ph -> ( voln ` X ) = ( ( voln* ` X ) |` ( CaraGen ` ( voln* ` X ) ) ) ) |
| 3 |
2
|
dmeqd |
|- ( ph -> dom ( voln ` X ) = dom ( ( voln* ` X ) |` ( CaraGen ` ( voln* ` X ) ) ) ) |
| 4 |
1
|
ovnome |
|- ( ph -> ( voln* ` X ) e. OutMeas ) |
| 5 |
|
eqid |
|- ( CaraGen ` ( voln* ` X ) ) = ( CaraGen ` ( voln* ` X ) ) |
| 6 |
5
|
caragenss |
|- ( ( voln* ` X ) e. OutMeas -> ( CaraGen ` ( voln* ` X ) ) C_ dom ( voln* ` X ) ) |
| 7 |
4 6
|
syl |
|- ( ph -> ( CaraGen ` ( voln* ` X ) ) C_ dom ( voln* ` X ) ) |
| 8 |
|
ssdmres |
|- ( ( CaraGen ` ( voln* ` X ) ) C_ dom ( voln* ` X ) <-> dom ( ( voln* ` X ) |` ( CaraGen ` ( voln* ` X ) ) ) = ( CaraGen ` ( voln* ` X ) ) ) |
| 9 |
7 8
|
sylib |
|- ( ph -> dom ( ( voln* ` X ) |` ( CaraGen ` ( voln* ` X ) ) ) = ( CaraGen ` ( voln* ` X ) ) ) |
| 10 |
|
eqidd |
|- ( ph -> ( CaraGen ` ( voln* ` X ) ) = ( CaraGen ` ( voln* ` X ) ) ) |
| 11 |
3 9 10
|
3eqtrd |
|- ( ph -> dom ( voln ` X ) = ( CaraGen ` ( voln* ` X ) ) ) |