Step |
Hyp |
Ref |
Expression |
1 |
|
dmvon.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
2 |
1
|
vonval |
⊢ ( 𝜑 → ( voln ‘ 𝑋 ) = ( ( voln* ‘ 𝑋 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) ) |
3 |
2
|
dmeqd |
⊢ ( 𝜑 → dom ( voln ‘ 𝑋 ) = dom ( ( voln* ‘ 𝑋 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) ) |
4 |
1
|
ovnome |
⊢ ( 𝜑 → ( voln* ‘ 𝑋 ) ∈ OutMeas ) |
5 |
|
eqid |
⊢ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) |
6 |
5
|
caragenss |
⊢ ( ( voln* ‘ 𝑋 ) ∈ OutMeas → ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ⊆ dom ( voln* ‘ 𝑋 ) ) |
7 |
4 6
|
syl |
⊢ ( 𝜑 → ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ⊆ dom ( voln* ‘ 𝑋 ) ) |
8 |
|
ssdmres |
⊢ ( ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ⊆ dom ( voln* ‘ 𝑋 ) ↔ dom ( ( voln* ‘ 𝑋 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) |
9 |
7 8
|
sylib |
⊢ ( 𝜑 → dom ( ( voln* ‘ 𝑋 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) |
10 |
|
eqidd |
⊢ ( 𝜑 → ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) |
11 |
3 9 10
|
3eqtrd |
⊢ ( 𝜑 → dom ( voln ‘ 𝑋 ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) |