Metamath Proof Explorer


Theorem dmvon

Description: Lebesgue measurable n-dimensional subsets of Reals. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypothesis dmvon.x ( 𝜑𝑋 ∈ Fin )
Assertion dmvon ( 𝜑 → dom ( voln ‘ 𝑋 ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) )

Proof

Step Hyp Ref Expression
1 dmvon.x ( 𝜑𝑋 ∈ Fin )
2 1 vonval ( 𝜑 → ( voln ‘ 𝑋 ) = ( ( voln* ‘ 𝑋 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) )
3 2 dmeqd ( 𝜑 → dom ( voln ‘ 𝑋 ) = dom ( ( voln* ‘ 𝑋 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) )
4 1 ovnome ( 𝜑 → ( voln* ‘ 𝑋 ) ∈ OutMeas )
5 eqid ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) )
6 5 caragenss ( ( voln* ‘ 𝑋 ) ∈ OutMeas → ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ⊆ dom ( voln* ‘ 𝑋 ) )
7 4 6 syl ( 𝜑 → ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ⊆ dom ( voln* ‘ 𝑋 ) )
8 ssdmres ( ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ⊆ dom ( voln* ‘ 𝑋 ) ↔ dom ( ( voln* ‘ 𝑋 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) )
9 7 8 sylib ( 𝜑 → dom ( ( voln* ‘ 𝑋 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) )
10 eqidd ( 𝜑 → ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) )
11 3 9 10 3eqtrd ( 𝜑 → dom ( voln ‘ 𝑋 ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) )