| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dmvon.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 2 |
1
|
vonval |
⊢ ( 𝜑 → ( voln ‘ 𝑋 ) = ( ( voln* ‘ 𝑋 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) ) |
| 3 |
2
|
dmeqd |
⊢ ( 𝜑 → dom ( voln ‘ 𝑋 ) = dom ( ( voln* ‘ 𝑋 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) ) |
| 4 |
1
|
ovnome |
⊢ ( 𝜑 → ( voln* ‘ 𝑋 ) ∈ OutMeas ) |
| 5 |
|
eqid |
⊢ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) |
| 6 |
5
|
caragenss |
⊢ ( ( voln* ‘ 𝑋 ) ∈ OutMeas → ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ⊆ dom ( voln* ‘ 𝑋 ) ) |
| 7 |
4 6
|
syl |
⊢ ( 𝜑 → ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ⊆ dom ( voln* ‘ 𝑋 ) ) |
| 8 |
|
ssdmres |
⊢ ( ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ⊆ dom ( voln* ‘ 𝑋 ) ↔ dom ( ( voln* ‘ 𝑋 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) |
| 9 |
7 8
|
sylib |
⊢ ( 𝜑 → dom ( ( voln* ‘ 𝑋 ) ↾ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) |
| 10 |
|
eqidd |
⊢ ( 𝜑 → ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) |
| 11 |
3 9 10
|
3eqtrd |
⊢ ( 𝜑 → dom ( voln ‘ 𝑋 ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) |